有机化学 ›› 2025, Vol. 45 ›› Issue (11): 3937-3952.DOI: 10.6023/cjoc202506036J 上一篇    下一篇

综述与进展

电子上转换的基本原理及其在有机催化中的应用

朱文慧, 杨金东*()   

  1. 清华大学化学系 基础分子科学中心 基础分子科学中心 北京 100084
  • 收稿日期:2025-06-30 修回日期:2025-07-31 发布日期:2025-08-26
  • 基金资助:
    国家自然科学基金(22222106); 国家自然科学基金(22571181); 国家自然科学基金(22193011); 国家自然科学基金(22393891)

Fundamentals of Electron Upconversion and Its Applications in Organocatalysis

Wenhui Zhu, Jin-Dong Yang*()   

  1. Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084
  • Received:2025-06-30 Revised:2025-07-31 Published:2025-08-26
  • Contact: *E-mail: jdyang@mail.tsinghua.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22222106); National Natural Science Foundation of China(22571181); National Natural Science Foundation of China(22193011); National Natural Science Foundation of China(22393891)

光子上转换(Photon upconversion)作为一种突破斯托克斯限制的光子能量增益技术, 已在发光材料与器件领域展现出重要应用价值. 受此物理过程的启发, 化学家近年来将其核心概念拓展至有机催化领域, 由此衍生出电子上转换(Electron upconversion)这一创新催化范式. 该策略通过电子作为催化媒介, 实现反应物向产物的高效转化. 相较于基态转化过程, 自由基转化过程的放能更小, 速率更快; 反应过程中产生的上转换中间体通过将电子传递给原料来完成催化循环. 目前发展的电子上转换策略主要包括: 分子解离型(如单分子均裂过程, 分子缔合型(如形成双分子三电子键), 超级电子供体体系等. 这些策略已成功应用于C—N偶联, Si—Si键活化等重要有机反应中, 为绿色催化提供了新思路. 此文详细介绍了其理论机制(包括热力学和动力学基础), 反应类型以及在催化合成中的应用, 概述了相关领域的发展前沿.

关键词: 电子上转换, 解离, 缔合, 超级电子供体, 还原剂

Photon upconversion, an anti-Stokes process that elevates photon energy, has become indispensable in photonic materials and optoelectronic devices. Inspired by this physical phenomenon, chemists have recently transposed its fundamental concept to organic catalysis, establishing electron upconversion as an innovative catalytic paradigm. The thermodynamic and kinetic advantages of electron upconversion originate from two key features: (1) Radical transformations exhibit significantly reduced energy release and accelerated reaction rates compared to ground-state processes; (2) The upconverted intermediates complete catalytic cycles via facile electron transfer mechanisms. Three principal electron upconversion strategies have been developed: molecular dissociation (e.g., homolytic bond cleavage), molecular association (e.g., three-electron bond formation), and super-electron-donor systems. These groundbreaking approaches have demonstrated remarkable efficacy in pivotal organic transformations including C—N cross-coupling and Si—Si bond activation, opening new avenues for sustainable catalysis development. This article provides a comprehensive discussion of the theoretical mechanisms (including thermodynamic and kinetic fundamentals), reaction types, and applications in catalytic synthesis, while also summarizing cutting-edge developments in related fields.

Key words: electron upconversion, dissociation, association, super-electron-donors, reductants