有机化学 ›› 2025, Vol. 45 ›› Issue (11): 3953-3973.DOI: 10.6023/cjoc202503035 上一篇    下一篇

综述与进展

螺烯衍生物的合成及其光电性质研究进展

宋青岳, 杨桂懿, 张樾, 丘子杰*()   

  1. 香港中文大学(深圳)理工学院 广东省高等学校聚集体科学基础研究卓越中心 深圳分子聚集学与工程研究院 广东深圳 518172
  • 收稿日期:2025-03-31 修回日期:2025-06-06 发布日期:2025-07-11
  • 基金资助:
    国家自然科学基金(52303382); 深圳市科技发展基金(JCYJ20220530143805012); 深圳市科技发展基金(JCYJ20241202152659001); 及广东省高等学校聚集体科学基础研究卓越中心资助项目.

Research Progress on the Synthesis and Optoelectronic Properties of Helicene Derivatives

Qing-Yue Song, Guiyi Yang, Yue Zhang, Zijie Qiu*()   

  1. Shenzhen Institute of Aggregate Science and Technology, Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen Guangdong 518172
  • Received:2025-03-31 Revised:2025-06-06 Published:2025-07-11
  • Contact: *E-mail: ijieqiu@cuhk.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52303382); Science, Technology and Innovation Commission of Shenzhen Municipality(JCYJ20220530143805012); Science, Technology and Innovation Commission of Shenzhen Municipality(JCYJ20241202152659001); Guangdong Basic Research Center of Excellence for Aggregate Science.

螺烯及其衍生物是一类由芳香环邻位稠合形成的非平面型纳米碳分子, 其独特的螺旋结构赋予了螺烯显著的手性光学活性, 表现出圆二色性(CD)和圆偏振发光(CPL)性质. 这些特性使螺烯在光学材料和生物传感器领域具有重要的潜在应用价值. 杂原子掺杂是提升螺烯性能的有效策略, 通过引入氮、硼、氧或硫等杂原子, 可以精确调控螺烯的电子结构, 从而显著增强其手性光学性能和量子产率. 总结了近三年来该领域的最新研究进展, 重点涵盖全碳骨架螺烯及杂原子掺杂的螺烯衍生物的设计、合成及性能优化策略, 并对未来发展方向进行了展望.

关键词: 螺烯, 纳米碳分子, 手性材料, 圆偏振发光, 杂原子掺杂

Helicenes and their derivatives represent a class of non-planar nanocarbon molecules formed by ortho-fused aromatic rings. Their unique helical structure endows helicenes with remarkable chiral optical activity, exhibiting circular dichroism (CD) and circularly polarized luminescence (CPL) properties. These characteristics make helicenes highly promising for applications in optical materials and biosensors. Heteroatom doping is an effective strategy to enhance the performance of helicenes. By introducing heteroatoms such as nitrogen, boron, oxygen, or sulfur, the electronic structure of helicenes can be precisely tuned, significantly improving their chiral optical properties and quantum yield. The latest research progress in this field over the past three years is summarized, focusing on the design, synthesis, and performance optimization strategies of all-carbon helicenes and heteroatom-doped helicene nano-carbon molecules. Future development directions are also discussed.

Key words: helicene, molecular nanocarbon, chiral material, circularly polarized luminescence, heteroatom doping