Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (11): 4279-4288.DOI: 10.6023/cjoc202105035 Previous Articles Next Articles
REVIEWS
乔怡a, 张庆林b,c, 陈单丹b,c,*(), 刘美娜a,*(), 刘文b,c,*()
收稿日期:
2021-05-20
修回日期:
2021-06-16
发布日期:
2021-07-05
通讯作者:
陈单丹, 刘美娜, 刘文
基金资助:
Yi Qiaoa, Qinglin Zhangb,c, Dandan Chenb,c(), Meina Liua(), Wen Liub,c()
Received:
2021-05-20
Revised:
2021-06-16
Published:
2021-07-05
Contact:
Dandan Chen, Meina Liu, Wen Liu
Supported by:
Share
Yi Qiao, Qinglin Zhang, Dandan Chen, Meina Liu, Wen Liu. Application of CRISPR/Cas9 Gene Editing System in Obtaining Natural Products in Actinomycetes[J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4279-4288.
方法名称 | 核心技术 | 操作体系 | 技术参数 | 方法特点 |
---|---|---|---|---|
CRISPR/Cas9介导的TAR克隆 | CRISPR/Cas9 TAR | 大肠杆菌 酿酒酵母 | 抓取上限约60~70 kb | 操作体系复杂、抓取片段较短 |
CATCH | CRISPR/Cas9 Gibson组装 | 体外 大肠杆菌 | 抓取上限超过100 kb | 技术要求较高、片段越长抓取越难 |
ExoCET | CRISPR/Cas9 RecET重组 | 大肠杆菌 | 抓取上限超过100 kb | 操作体系相对简单、抓取片段较长 |
ICE | CRISPR/Cas9 T4聚合酶修复 Gibson组装 | 体外 大肠杆菌 | 单位点编辑 | 大片段编辑的技术要求较高 |
mCRISTAR | CRISPR/Cas9 TAR | 大肠杆菌 酿酒酵母 | 2~4个位点同时编辑 | 操作较为简便 |
mpCRISTAR | CRISPR/Cas9 TAR | 大肠杆菌 酿酒酵母 | 4~8个位点同时编辑 | 操作较为灵活、步骤较多 |
miCASTAR | CRISPR/Cas9 TAR | 体外 酿酒酵母 | 2~4个位点同时编辑 | 操作体系相对简单、操作简便 |
方法名称 | 核心技术 | 操作体系 | 技术参数 | 方法特点 |
---|---|---|---|---|
CRISPR/Cas9介导的TAR克隆 | CRISPR/Cas9 TAR | 大肠杆菌 酿酒酵母 | 抓取上限约60~70 kb | 操作体系复杂、抓取片段较短 |
CATCH | CRISPR/Cas9 Gibson组装 | 体外 大肠杆菌 | 抓取上限超过100 kb | 技术要求较高、片段越长抓取越难 |
ExoCET | CRISPR/Cas9 RecET重组 | 大肠杆菌 | 抓取上限超过100 kb | 操作体系相对简单、抓取片段较长 |
ICE | CRISPR/Cas9 T4聚合酶修复 Gibson组装 | 体外 大肠杆菌 | 单位点编辑 | 大片段编辑的技术要求较高 |
mCRISTAR | CRISPR/Cas9 TAR | 大肠杆菌 酿酒酵母 | 2~4个位点同时编辑 | 操作较为简便 |
mpCRISTAR | CRISPR/Cas9 TAR | 大肠杆菌 酿酒酵母 | 4~8个位点同时编辑 | 操作较为灵活、步骤较多 |
miCASTAR | CRISPR/Cas9 TAR | 体外 酿酒酵母 | 2~4个位点同时编辑 | 操作体系相对简单、操作简便 |
质粒名称 | 抗性标签 | cas9基因启动子 | sgRNA启动子 | 质粒特性 |
---|---|---|---|---|
pCRISPomyces-1 | 阿伯拉霉素 | 组成型rpsLp | 组成型gapdhp (crRNA) 组成型rpsLp (tracrRNA) | 来源于pSG5的温敏型复制子 |
pCRISPomyces-2 | 阿伯拉霉素 | 组成型rpsLp | 组成型gapdhp (sgRNA) | 来源于pSG5的温敏型复制子 |
pKCcas9dO | 阿伯拉霉素 | 诱导型tipAp | 组成型j23199p (sgRNA) | 来源于pSG5的温敏型复制子 |
pCRISPR-Cas9 | 阿伯拉霉素 硫链丝菌素 | 诱导型tipAp | 组成型ermE*p (sgRNA) | 来源于pSG5的温敏型复制子 |
pCRISPR-dCas9 | 阿伯拉霉素 硫链丝菌素 | 诱导型tipAp | 组成型ermE*p (sgRNA) | 来源于pSG5的温敏型复制子 |
pWHU2653 | 阿伯拉霉素 | 组成型aac(3) IVp | 组成型ermE*p (sgRNA) | 来源于pIJ101的复制子 CodA 反筛标签 |
pMWCas9 | 阿伯拉霉素 硫链丝菌素 | 诱导型tipAp | 组成型ermE*p (sgRNA) | 来源于pIJ101的复制子 CodA反筛标签 |
质粒名称 | 抗性标签 | cas9基因启动子 | sgRNA启动子 | 质粒特性 |
---|---|---|---|---|
pCRISPomyces-1 | 阿伯拉霉素 | 组成型rpsLp | 组成型gapdhp (crRNA) 组成型rpsLp (tracrRNA) | 来源于pSG5的温敏型复制子 |
pCRISPomyces-2 | 阿伯拉霉素 | 组成型rpsLp | 组成型gapdhp (sgRNA) | 来源于pSG5的温敏型复制子 |
pKCcas9dO | 阿伯拉霉素 | 诱导型tipAp | 组成型j23199p (sgRNA) | 来源于pSG5的温敏型复制子 |
pCRISPR-Cas9 | 阿伯拉霉素 硫链丝菌素 | 诱导型tipAp | 组成型ermE*p (sgRNA) | 来源于pSG5的温敏型复制子 |
pCRISPR-dCas9 | 阿伯拉霉素 硫链丝菌素 | 诱导型tipAp | 组成型ermE*p (sgRNA) | 来源于pSG5的温敏型复制子 |
pWHU2653 | 阿伯拉霉素 | 组成型aac(3) IVp | 组成型ermE*p (sgRNA) | 来源于pIJ101的复制子 CodA 反筛标签 |
pMWCas9 | 阿伯拉霉素 硫链丝菌素 | 诱导型tipAp | 组成型ermE*p (sgRNA) | 来源于pIJ101的复制子 CodA反筛标签 |
[1] |
Bérdy, J. J. Antibiot. (Tokyo) 2012, 65, 441.
doi: 10.1038/ja.2012.54 |
[2] |
Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2020, 83, 770.
doi: 10.1021/acs.jnatprod.9b01285 pmid: 32162523 |
[3] |
Bode, H. B.; Müller, R. Angew. Chem., Int. Ed. 2005, 44, 6828.
doi: 10.1002/(ISSN)1521-3773 |
[4] |
Lin, Z.; Chen, D.; Liu, W. Sci. China Chem. 2016, 59, 1175.
doi: 10.1007/s11426-016-0062-x |
[5] |
Chen, M.; Liu, J.; Duan, P. Natl. Sci. Rev. 2017, 4, 553.
doi: 10.1093/nsr/nww045 |
[6] |
Smanski, M. J.; Zhou, H.; Claesen, J. Nat. Rev. Microbiol. 2016, 14, 135.
doi: 10.1038/nrmicro.2015.24 |
[7] |
Baltz, R. H. J. Ind. Microbiol. Biotechnol. 2016, 43, 343.
doi: 10.1007/s10295-015-1682-x |
[8] |
Medema, M. H.; Blin, K.; Cimermancic, P. Nucleic Acids Res. 2011, 39, W339.
doi: 10.1093/nar/gkr466 |
[9] |
Ziemert, N.; Alanjary, M.; Weber, T. Nat. Prod. Rep. 2016, 33, 988.
doi: 10.1039/c6np00025h pmid: 27272205 |
[10] |
Horvath, P.; Barrangou, R. Science 2010, 327, 167.
doi: 10.1126/science.1179555 |
[11] |
Smargon, A. A.; Shi, Y. J.; Yeo, G. W. Nat. Cell Biol. 2020, 22, 143.
doi: 10.1038/s41556-019-0454-7 pmid: 32015437 |
[12] |
Cong, L.; Ran, F. A.; Cox, D. Science 2013, 339, 819.
doi: 10.1126/science.1231143 pmid: 23287718 |
[13] |
Gasiunas, G.; Barrangou, R.; Horvath, P. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E2579.
doi: 10.1073/pnas.1208507109 |
[14] |
Fonfara, I.; Le, R. A.; Chylinski, K. Nucleic Acids Res. 2014, 42, 2577.
doi: 10.1093/nar/gkt1074 pmid: 24270795 |
[15] |
Hsu, P. D.; Lander, E. S.; Zhang, F. Cell 2014, 157, 1262.
doi: 10.1016/j.cell.2014.05.010 |
[16] |
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. Science 2012, 337, 816.
doi: 10.1126/science.1225829 |
[17] |
Blin, K.; Pedersen, L. E.; Weber, T. Synth. Syst. Biotechnol. 2016, 1, 118.
doi: 10.1016/j.synbio.2016.01.003 pmid: 29062934 |
[18] |
Burke, D. T.; Carle, G. F.; Olson, M. V. Biotechnol. 1992, 24, 172.
|
[19] |
Fu, J.; Bian, X.; Hu, S. Nat. Biotechnol. 2012, 30, 440.
doi: 10.1038/nbt.2183 |
[20] |
Noskov, V.; Kouprina, N.; Leem, S. H. Nucleic Acids Res. 2002, 30, e8.
doi: 10.1093/nar/30.2.e8 |
[21] |
Hoang, T. T.; Karkhoff-Schweizer, R. R.; Kutchma, A. J. Gene 1998, 212, 77.
pmid: 9661666 |
[22] |
Li, L.; Jiang, W.; Lu, Y. Biotechnol. Adv. 2017, 35, 936.
doi: 10.1016/j.biotechadv.2017.03.007 |
[23] |
Yamanaka, K.; Reynolds, K. A.; Kersten, R. D. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1957.
doi: 10.1073/pnas.1319584111 pmid: 24449899 |
[24] |
Lee, N. C.; Larionov, V.; Kouprina, N. Nucleic Acids Res. 2015, 43, e55.
doi: 10.1093/nar/gkv112 |
[25] |
Jiang, W.; Zhao, X.; Gabrieli, T.; Lou, C. B.; Ebenstein, Y.; Zhu, T. F. Nat. Commun. 2015, 6, 8101.
doi: 10.1038/ncomms9101 |
[26] |
Jiang, W.; Zhu, T. F. Nat. Protoc. 2016, 11, 960.
doi: 10.1038/nprot.2016.055 |
[27] |
Wang, H.; Li, Z.; Jia, R. Nucleic Acids Res. 2018, 46, 2697.
doi: 10.1093/nar/gkx1296 |
[28] |
Wang, J. W.; Wang, A.; Li, K. BioTechniques 2015, 58, 161.
doi: 10.2144/000114261 |
[29] |
Kang, H. S.; Charlop-Powers, Z.; Brady, S. F. ACS Synth. Biol. 2016, 5, 1002.
doi: 10.1021/acssynbio.6b00080 |
[30] |
Kim, H.; Ji, C.-H.; Je, H.-W. ACS Synth. Biol. 2020, 9, 175.
doi: 10.1021/acssynbio.9b00382 |
[31] |
Kim, S. H.; Lu, W.; Ahmadi, M. K. ACS Synth. Biol. 2019, 8, 109.
doi: 10.1021/acssynbio.8b00361 |
[32] |
Jiang, Y.; Chen, B.; Duan, C. Appl. Environ. Microbiol. 2015, 81, 2506.
doi: 10.1128/AEM.04023-14 |
[33] |
Li, Q.; Sun, B.; Chen, J. Acta Biochim. Biophys. Sin. 2021, 53, 620.
doi: 10.1093/abbs/gmab036 |
[34] |
Song, C.; Luan, J.; Cui, Q. ACS Synth. Biol. 2019, 8, 137.
doi: 10.1021/acssynbio.8b00402 |
[35] |
Alberti, F.; Corre, C. Nat. Prod. Rep. 2019, 36, 1237.
doi: 10.1039/C8NP00081F |
[36] |
Cobb, R. E.; Wang, Y.; Zhao, H. ACS Synth. Biol. 2015, 4, 723.
doi: 10.1021/sb500351f |
[37] |
Zhang, M. M.; Wong, F. T.; Wang, Y. Nat. Chem. Biol. 2017, 13, 607.
doi: 10.1038/nchembio.2341 |
[38] |
Huang, H.; Zheng, G.; Jiang, W. Acta Biochim. Biophys. Sin. 2015, 47, 231.
doi: 10.1093/abbs/gmv007 |
[39] |
Tong, Y.; Charusanti, P.; Zhang, L. ACS Synth. Biol. 2015, 4, 1020.
doi: 10.1021/acssynbio.5b00038 |
[40] |
Zeng, H.; Wen, S.; Xu, W. Appl. Microbiol. Biotechnol. 2015, 99, 10575.
doi: 10.1007/s00253-015-6931-4 pmid: 26318449 |
[41] |
Mo, J.; Wang, S.; Zhang, W. Synth. Syst. Biotechnol. 2019, 4, 86.
|
[42] |
Liu, G.; Chater, K. F.; Chandra, G. Microbiol. Mol. Biol. Rev. 2013, 77, 112.
doi: 10.1128/MMBR.00054-12 |
[43] |
Bikard, D.; Jiang, W.; Samai, P. Nucleic Acids Res. 2013, 41, 7429.
doi: 10.1093/nar/gkt520 pmid: 23761437 |
[44] |
Qi, L. S.; Larson, M. H.; Gilbert, L. A. Cell 2013, 152, 1173.
doi: 10.1016/j.cell.2013.02.022 |
[45] |
Gilbert, L. A.; Larson, M. H.; Morsut, L. Cell 2013, 154, 442.
doi: 10.1016/j.cell.2013.06.044 pmid: 23849981 |
[46] |
Mali, P.; Aach, J.; Stranges, P. B. Nat. Biotechnol. 2013, 31, 833.
doi: 10.1038/nbt.2675 |
[47] |
Dong, C.; Fontana, J. Nat. Commun. 2018, 9, 2489.
doi: 10.1038/s41467-018-04901-6 |
[48] |
Zhang, X.; Tee, L.; Wang, X. Mol. Ther.-Nucleic Acids 2015, 4, e264.
doi: 10.1038/mtna.2015.37 |
[49] |
Su, Q.; Cheng, C.; Niu, J. Curr. Opin. Chem. Biol. 2021, 64, 10.
doi: 10.1016/j.cbpa.2021.02.004 |
[1] | Xiurong Wu, Chaojiang Xiao, Yi Shen, Hongxia Tang, Junyi Zhu, Bei Jiang. Research Progress on Antimalarial Natural Sesquiterpenoids from Plants from 1972 to 2022 [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2764-2789. |
[2] | Ran Gao, Weisheng Tian. Synthesis of Azedarachol and 2α,3α,20R-Trihydroxypregnane-16β-methacrylate [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2521-2526. |
[3] | Fasheng Shi, Shengwen Wang, Huan Xu, Xingxing Lu, Xinling Yang, Tengda Sun, Changkai Wang, Xiaoming Zhang, Qing Yang, Yun Ling. Design, Synthesis and Fungicidal Actiνity of Noνel Thiosemicarbazide Compounds [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2106-2116. |
[4] | Yaqian Yan, Haoxin Wang, Yaoyao Li. Discovery of a New Polycyclic Tetramate Macrolactam 3-Hydroxycombamide I [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1557-1561. |
[5] | Mengmeng Xu, Quan Cai. Progress of Catalytic Asymmetric Diels-Alder Reactions of 2-Pyrones [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 698-713. |
[6] | Haixia Shi, Yaoyao Li, Jing Zhu, Haoxin Wang, Yuemao Shen. Discovery of Germicidin Glucuronides from Streptomyces sp. LZ35 [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2502-2506. |
[7] | Ting Jiang, Hong Pu, Yanwen Duan, Xiaohui Yan, Yong Huang. New Natural Products of Streptomyces Sourced from Deep-Sea, Desert, Volcanic, and Polar Regions from 2009 to 2020 [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1804-1820. |
[8] | Jiao Yujie, Yan Yaqian, Liu Yan, Zhu Deyu, Shen Yuemao, Li Yaoyao. New Polycyclic Tetramate Macrolactam from Streptomyces sp. S001 [J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1779-1784. |
[9] | Zhang Kun, Xie Xiangqian, Shi Haixia, Shen Yuemao, Wang Haoxin. ortho-Dialkyl-Substituted Aromatic Acids from Verrucosispora sp. NS0172 [J]. Chinese Journal of Organic Chemistry, 2020, 40(4): 1038-1042. |
[10] | Shi Zhan, Nie Kerui, Liu Chang, Zhang Mingzhi, Zhang Weihua. Biological Activities of 3-(5-Oxazolyl)indole Natural Products and Advances on Synthesis of Its Derivatives [J]. Chinese Journal of Organic Chemistry, 2020, 40(2): 327-338. |
[11] | Zhang Juchenga, Yang Xueqiong, Zhou Hao, Yang Yabin, Ding Zhongtao. New Natural Products of Rare Actinomycetes from 2006 to 2018 [J]. Chin. J. Org. Chem., 2019, 39(4): 982-1012. |
[12] | Li Xiaojun, Zhang Wanbin, Gao Shuanhu. Total Synthesis of Complex Natural Products: Combination of Chemical Synthesis and Biosynthesis Strategies [J]. Chin. J. Org. Chem., 2018, 38(9): 2185-2198. |
[13] | Jin Wenbing, Yuan Hua, Tang Gongli. Strategies for Construction of Cyclopropanes in Natural Products [J]. Chin. J. Org. Chem., 2018, 38(9): 2324-2334. |
[14] | Chen Yang, Li Wei-Dong Z. Asymmetric Total Synthesis of (-)-Cephalotaxine [J]. Chin. J. Org. Chem., 2017, 37(8): 1885-1902. |
[15] | Xiao Chunxia, Cao Lin, Wang Jia, Miao Yinlong, Fan Huafang. Advances in the Collective Synthesis of Lycopodium Alkaloids [J]. Chin. J. Org. Chem., 2017, 37(4): 810-823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||