Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (12): 4815-4824.DOI: 10.6023/cjoc202106014 Previous Articles Next Articles
Special Issue: 有机光催化虚拟合辑; 绿色合成化学专辑; 热点论文虚拟合集
ARTICLES
耿芳洲a,b, 王世超a, 宋克贤a, 郝文娟a,b,*(), 姜波a,b,*()
收稿日期:
2021-06-07
修回日期:
2021-07-14
发布日期:
2021-07-19
通讯作者:
郝文娟, 姜波
作者简介:
基金资助:
Fangzhou Genga,b, Shichao Wanga, Kexian Songa, Wenjuan Haoa,b(), Bo Jianga,b()
Received:
2021-06-07
Revised:
2021-07-14
Published:
2021-07-19
Contact:
Wenjuan Hao, Bo Jiang
About author:
Supported by:
Share
Fangzhou Geng, Shichao Wang, Kexian Song, Wenjuan Hao, Bo Jiang. Visible-Light-Driven Photocatalytic Kharasch-Type Addition of 1,6-Enynes[J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4815-4824.
Entry | Variation of the established conditions | Yield/% |
---|---|---|
1 | None | 85 |
2 | 4.0 Equiv. of BrCCl3 | 80 |
3 | 3.0 Equiv. of BrCCl3 | 41 |
4 | AgSCF3 instead of AgOAc | 73 |
5 | 10 mol% of AgOAc | Trace |
6 | 50 mol% of AgOAc | 36 |
7 | Ru(bpy)3Cl2•6H2O instead of fac-Ir(ppy)3 | 80 |
8 | Eosin Y instead of fac-Ir(ppy)3 | 67 |
9 | Without fac-Ir(ppy)3 | 0 |
10 | No light | 0 |
11 | CH3CN as solvent | 72 |
12 | THF as solvent | Trace |
13 | K2CO3 instead of NaOAc | 64 |
14 | CsCO3 instead of NaOAc | 68 |
Entry | Variation of the established conditions | Yield/% |
---|---|---|
1 | None | 85 |
2 | 4.0 Equiv. of BrCCl3 | 80 |
3 | 3.0 Equiv. of BrCCl3 | 41 |
4 | AgSCF3 instead of AgOAc | 73 |
5 | 10 mol% of AgOAc | Trace |
6 | 50 mol% of AgOAc | 36 |
7 | Ru(bpy)3Cl2•6H2O instead of fac-Ir(ppy)3 | 80 |
8 | Eosin Y instead of fac-Ir(ppy)3 | 67 |
9 | Without fac-Ir(ppy)3 | 0 |
10 | No light | 0 |
11 | CH3CN as solvent | 72 |
12 | THF as solvent | Trace |
13 | K2CO3 instead of NaOAc | 64 |
14 | CsCO3 instead of NaOAc | 68 |
[1] |
(a) Nagle, D. G.; Zhou, Y. D.; Park, P. U.; Paul, V. J.; Rajbhandari, I.; Duncan, C. J. G.; Pasco, D. S. J. Nat. Prod. 2000, 63, 1431.
pmid: 7490731 |
(b) Ito, T.; anaka, T.; Iinuma, T. M.; Nakaya, K.; Takahashi, Y.; Sawa, R.; Murata, J.; Darnaedi, D. J. Nat. Prod. 2004, 67, 932.
doi: 10.1021/np030236r pmid: 7490731 |
|
(c) Dai, J. R.; Hallock, Y. F.; Cardellina, J. H.; Boyd, M. R. J. Nat. Prod. 1998, 61, 351.
pmid: 7490731 |
|
(d) DeSolms, S. J.; Woltersdorf, O. W.; Cragoe, E. J.; Watson, L. S.; Fanelli, G. M. J. Med. Chem. 1978, 21, 437.
doi: 10.1021/jm00203a006 pmid: 7490731 |
|
(e) Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. J. Med. Chem. 1995, 38, 4821.
pmid: 7490731 |
|
[2] |
(a) Anstead, G. M.; Wilson, S. R.; Katzenellenbogen, J. A. J. Med. Chem. 1989, 32, 2163.
pmid: 15876535 |
(b) McDevitt, R. E.; Malamas, M. S.; Manas, E. S.; Unwalla, R. J.; Xu, Z. B.; Miller, C. P.; Harris, H. A. Bioorg. Med. Chem. Lett. 2005, 15, 3137.
pmid: 15876535 |
|
(c) Park, C. H.; Siomboing, X.; Yous, S.; Gressier, B; Luyckx, M.; Chavatte, P. Eur. J. Med. Chem. 2002, 37, 461-468.
doi: 10.1016/S0223-5234(02)01373-9 pmid: 15876535 |
|
[3] |
(a) Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Dal Rhee, S.; Jung, W. H.; Yang, S. D.; Kim, S. J.; Woo, J. R. J. Med. Chem. 2006, 49, 4781.
doi: 10.1021/jm060389m pmid: 22536944 |
(b) Kiselev, E.; DeGuire, S.; Morrell, A.; Agama, K.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2011, 54, 6106.
doi: 10.1021/jm200719v pmid: 22536944 |
|
(c) Nguyen, T. X.; Morrell, A.; Conda-Sheridan, M.; Marchand, C.; Agama, K.; Bermingam, A.; Stephen, A. G; Chergui, A.; Naumova, A.; Fisher, R.; O’Keefe, B. R.; Pommier, Y.; Cushman, M. J. Med. Chem. 2012, 55, 4457.
doi: 10.1021/jm300335n pmid: 22536944 |
|
(d) Gamo, F. J.; Sanz, L. M.; Vidal, J.; de, C. C.; Alvarez, E.; Lavandera, J. L.; Vanderwall, D. E. Green, D. V. S.; Kumar, V.; Hasan, S.; Brown, J. R.; Peishoff, C. E.; Cardon, L. R.; Garcia-Bustos, J. F. Nature 2010, 465, 305.
doi: 10.1038/nature09107 pmid: 22536944 |
|
[4] |
(a) Liu, W.; Buck, M.; Chen, N.; Shang, M.; Taylor, N. J.; Asoud, J.; Wu, X.; Hasinoff, B. B.; Dmitrienko, G. I. Org. Lett. 2007, 9, 2915.
doi: 10.1021/ol0712374 pmid: 19902905 |
(b) Jeffrey, J. L.; Sarpong, R.; Org. Lett. 2009, 11, 5450.
doi: 10.1021/ol902141z pmid: 19902905 |
|
[5] |
(a) Cappelli, A.; Pericot Mohr, G. L.; Giuliani, G.; Galeazzi, S.; Anzini, M.; Mennuni, L.; Ferrari, F.; Makovec, F.; Kleinrath, E. M.; Langer, T.; Valoti, M.; Giorgi, G.; Vomero, S. J. Med. Chem. 2006, 49, 6451.
pmid: 17064065 |
(b) Tseng, C. H.; Tzeng, C. C.; Yang, C. L.; Lu, P. J.; Chen, H. L.; Li, H. Y.; Chuang, Y. C.; Yang, C. N.; Chen, Y. L. J. Med. Chem. 2010, 53, 6169.
pmid: 17064065 |
|
[6] |
(a) Koelsch, C. F. J. Am. Chem. Soc. 1932, 54, 2487.
doi: 10.1021/ja01345a046 |
(b) Frank, R. L.; Eklund, H. J.; Richter, W.; Vanneman, C. R.; Wennerberg, A. N. J. Am. Chem. Soc. 1944, 66, 1.
doi: 10.1021/ja01229a001 |
|
[7] |
(a) Bergmann, E. D. J. Org. Chem. 1956, 21, 461.
doi: 10.1021/jo01110a023 |
(b) Manning, C.; McClory, M. R.; McCullough, J. J. J. Org. Chem. 1981, 46, 919.
doi: 10.1021/jo00318a018 |
|
(c) Dong, D.-Q.; Chen, W.-J.; Chen, D.-M.; Li, L. X..; Li, G. H.; Wang, Z. L.; Deng, Q.; Long, S. Chin. J. Org. Chem. 2019, 39, 3190. (in Chinese)
doi: 10.6023/cjoc201904070 |
|
( 董道青, 陈文静, 陈德茂, 李丽霞, 李光辉, 王祖利, 邓企, 龙姝, 有机化学, 2019, 39, 3190.)
doi: 10.6023/cjoc201904070 |
|
[8] |
(a) Chernyak, N.; Gorelsky, S. I.; Gevorgyan, V. Angew. Chem. Int. Ed. 2011, 50, 2342.
doi: 10.1002/anie.201006751 |
(b) Shintani, R.; Takatsu, K.; Hayashi, T. Angew. Chem. Int. Ed. 2007, 46, 3735.
doi: 10.1002/(ISSN)1521-3773 |
|
(c) He, G.; Wu, C.; Zhou, J.; Yang, Q.; Zhang, C.; Zhou, Y.; Zhang, H.; Liu, H. J. Org. Chem. 2018, 83, 13356.
doi: 10.1021/acs.joc.8b02149 |
|
(d) Song, L.; Tian, G.; Van der Eycken, E. V. Chem. Eur. J. 2019, 25, 7645.
doi: 10.1002/chem.v25.32 |
|
(e) Liu, Q.-S.; Lv, Y.-F.; Liu, R.-S.; Zhao, X.-H.; Wang, J.-W.; Wei, W. Chin. Chem. Lett. 2021, 32, 136.
doi: 10.1016/j.cclet.2020.11.059 |
|
[9] |
(a) Zhang, Y. L.; Sun, K.; Lv, Q. Y.; Chen, X. L.; Qu, L. B.; Yu, B. Chin. Chem. Lett. 2019, 30, 1361.
doi: 10.1016/j.cclet.2019.03.034 |
(b) Zhang, T.-S.; Hao, W.-J.; Wang, R.; Wang, S.-C.; Tu, S.-J.; Jiang, B. Green Chem. 2020, 22, 4259.
doi: 10.1039/D0GC00771D |
|
(c) Shen, Z.-J.; Wu, Y.-N.; He, C.-L.; He, L.; Hao, W.-J.; Wang, A.-F.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 445.
doi: 10.1039/C7CC08516H |
|
(d) Wu, Y.-N.; Zhang, T.-S.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Asian J. Org. Chem. 2020, 9, 1040.
doi: 10.1002/ajoc.v9.7 |
|
(e) Wei, W.-T.; Li, Q.; Zhang, M.-Z.; He, W.-M. Chin. J. Catal. 2021, 42, 731.
doi: 10.1016/S1872-2067(20)63702-0 |
|
(f) Zhang, T.-S.; Hao, W.-J.; Cai, P.-J.; Li, G.; Tu, S.-J.; Jiang, B. Front. Chem. 2020, 8, 234.
doi: 10.3389/fchem.2020.00234 |
|
[10] |
Shi, H.-N.; Huang, M.-H.; Hao, W.-J.; Tu, X.-C.; Tu, S.-J.; Jiang, B. J. Org. Chem. 2019, 84, 16027.
doi: 10.1021/acs.joc.9b02525 pmid: 31769289 |
[11] |
Shen, Z.-J.; Wang, S.-C.; Hao, W.-J.; Yang, S.-Z.; Tu, S.-J.; Jiang, B. Adv. Synth. Catal. 2019, 361, 3837.
doi: 10.1002/adsc.v361.16 |
[12] |
(a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
doi: 10.1021/cr300503r |
(b) Zhu, C.-F.; Zhang, J.; Zhu, Y.-L.; Hao, W.-J.; Tu, S.-J.; Wang, D.-C.; Jiang, B. Org. Chem. Front. 2021, 8, 1952.
doi: 10.1039/D1QO00124H |
|
(c) Shi, J.; Wei, W. Chin. J. Org. Chem. 2020, 40, 2170. (in Chinese)
doi: 10.6023/cjoc202000041 |
|
( 时建伟, 魏伟, 有机化学, 2020, 40, 2170.)
doi: 10.6023/cjoc202000041 |
|
(d) Peng, S.; Lin, Y.-W.; He, W.-M. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
doi: 10.6023/cjoc202000006 |
|
( 彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
doi: 10.6023/cjoc202000006 |
|
(e) Yi, R.; He, W. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
doi: 10.6023/cjoc202100022 |
|
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
doi: 10.6023/cjoc202100022 |
|
(f) Chen, J.-R.; Hu, X. Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.
doi: 10.1039/C5CS00655D |
|
(g) Xuan, J.; Zhang, Z. G.; Xiao, W.-J. Angew. Chem. Int. Ed. 2015, 54, 15632.
doi: 10.1002/anie.v54.52 |
|
(h) Huang, H. C.; Jia, K. F.; Chen, Y. ACS Catal. 2016, 6, 4983.
doi: 10.1021/acscatal.6b01379 |
|
(i) Mi, X.; Kong, Y. F.; Zhang, J. Y.; Pi, C.; Cui, X. L. Chin. Chem. Lett. 2019, 30, 2295.
doi: 10.1016/j.cclet.2019.09.040 |
|
[13] |
(a) Zhu, S.-S.; Zhou, J.-N.; Wu, Q.-L.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2020, 7, 2975.
doi: 10.1039/D0QO00917B pmid: 31769294 |
(b) Zhao, Q.; Hao, W.-J.; Shi, H.-N.; Xu, T.; Tu, S.-J.; Jiang, B. Org. Lett. 2019, 21, 9784.
doi: 10.1021/acs.orglett.9b04018 pmid: 31769294 |
|
(c) Gui, Q.-W.; Teng, F.; Li, Z.-C.; Xiong, Z.-Y.; Jin, X.-F.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 1907.
doi: 10.1016/j.cclet.2021.01.021 pmid: 31769294 |
|
(d) Liu, K.-J.; Wang, Z.; Lu, L.-H.; Chen, J.-Y.; Zeng, F.; Lin, Y.-W.; Cao, Z.; Yu, X.; He, W.-M. Green Chem. 2021, 23, 496.
doi: 10.1039/D0GC02663H pmid: 31769294 |
|
[14] |
(a) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
doi: 10.1021/acs.chemrev.0c00030 |
(b) Yang, Z.; Stivanin, M. L.; Jurberg, I. D.; Koenigs, R. M. Chem. Soc. Rev. 2020, 49, 6833.
doi: 10.1039/D0CS00224K |
|
(c) Chen, D. M.; Sun, Y. Y.; Dong, D. Q.; Han, Q. Q.; Wang, Z. L. Chin. J. Org. Chem. 2020, 40, 4267. (in Chinese)
doi: 10.6023/cjoc202006025 |
|
( 陈德茂, 孙媛媛, 董道青, 韩晴晴, 王祖利, 有机化学, 2020, 40, 4267.)
doi: 10.6023/cjoc202006025 |
|
(d) Meng, N.; Lv, Y. F.; Liu, Q. S.; Liu, R. S.; Zhao, X. H.; Wei, W. Chin. Chem. Lett. 2021, 32, 258.
doi: 10.1016/j.cclet.2020.11.034 |
|
[15] |
Wu, D.; Hao, W.-J.; Rao, Q.; Lu, Y.; Tu, S.-J.; Jiang, B. Chem. Commun. 2021, 57, 1911.
doi: 10.1039/D0CC07880H |
[16] |
(a) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science 1945, 102, 128.
pmid: 17777366 |
(b) Chen, B.; Fang, C.; Liu, P.; Ready, J. M. Angew. Chem., nt. Ed. 2017, 56, 8780.
pmid: 17777366 |
|
(c) Wang, L. L.; Zhang, M.; Zhang, Y. L.; Liu, Q. S.; Zhang, X. H.; Li, J. S.; Luo, Z. D.; Wei, W. Chin. Chem. Lett. 2020, 31, 67.
doi: 10.1016/j.cclet.2019.05.041 pmid: 17777366 |
|
[17] |
(a) Bacauanu, V.; Cardinal, S.; Yamauchi, M.; Kondo, M.; Fernandez, D. F.; Remy, R.; MacMillan, D. W. C. Angew. Chem., nt. Ed. 2018, 57, 12543.
|
(b) Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-H. Tang, S. ACS Sustainable Chem. Eng. 2019, 7, 10154.
doi: 10.1021/acssuschemeng.9b02178 |
[1] | Qinggang Mei, Qinghan Li. Recent Progress of Visible Light-Induced the Synthesis of C(3) (Hetero)arylthio Indole Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 398-408. |
[2] | Yanshuo Zhu, Hongyan Wang, Penghua Shu, Ke'na Zhang, Qilin Wang. Recent Advances on Alkoxy Radicals-Mediated C(sp3)—H Bond Functionalization via 1,5-Hydrogen Atom Transfer [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 1-17. |
[3] | Hongqiong Zhao, Miao Yu, Dongxue Song, Qi Jia, Yingjie Liu, Yubin Ji, Ying Xu. Progress on Decarboxylation and Hydroxylation of Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 70-84. |
[4] | Yukun Jin, Baoyi Ren, Fushun Liang. Visible Light-Mediated Selective C—F Bond Cleavage of Trifluoromethyl Groups and Its Application in Synthesizing gem-Difluoro-Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 85-110. |
[5] | Lingna Wang, Xiaoqing Liu, Gang Lin, Hongying Jin, Minjun Jiao, Xuefen Liu, Shuping Luo. Photocatalytic Activation of C(sp3)—H Bonds to Form C—S Bonds Catalyzed by (Oxybis(4,1-phenylene))bis(phenylmethanone) [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2848-2854. |
[6] | Yu Zhao, Kai Zhang, Yubin Bai, Yantu Zhang, Shihui Shi. A Metal-Free Photocatalytic Hydrosilylation of Alkenes Using Bromide Salt as a Hydrogen Atom Transfer Reagent [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2837-2847. |
[7] | Yingjie Liu, Gangqing Shi, Ge Chou, Xin Zhang, Dongxue Song, Ning Chen, Miao Yu, Ying Xu. Progress of α-Position Functionalization of Ethers under Photo/Electrocatalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2664-2681. |
[8] | Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742. |
[9] | Jiaxia Pu, Xiaoying Jia, Lirong Han, Qinghan Li. Research Progress of Visible Light Promoted C—N Bond Fracture to Construct C—C Bond [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2591-2613. |
[10] | Yaxin Liu, Yu Zhang, Shuping Luo. Design and Synthesis of Thermal Delayed Fluorescence (TADF) Photocatalyst and Its Photocatalytic Dehalogenation Performance [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2476-2483. |
[11] | Ning Chen, Chengdong Zhang, Peng Li, Ge Qiu, Yinjie Liu, Tianlei Zhang. Research Progress in Synthesis of Spirocyclic Compounds Driven by Photo/Electrochemistry [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2293-2303. |
[12] | Zhongrong Xu, Jieping Wan, Yunyun Liu. Transition Metal-Free C—H Thiocyanation and Selenocyanation Based on Thermochemical, Photocatalytic and Electrochemical Process [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2425-2446. |
[13] | Hongyu Hou, Yuanyuan Cheng, Bin Chen, Chenho Tung, Lizhu Wu. α-Acylation of Olefins via Photocatalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1012-1022. |
[14] | Shenhao Chen, Song Zou, Chanjuan Xi. Photocatalyzed 2∶2 Coupling of Styrene and BrCF2CO2Me: A Facile Synthesis of Bis-difluoroacetylated Hexestrol Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1157-1167. |
[15] | Menghan Shen, Laiqiang Li, Quan Zhou, Jiehui Wang, Lei Wang. Visible-Light-Induced Regio-selective Oxidative Coupling of Quinoxalinones with Pyrrole Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 697-704. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||