Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (4): 1146-1162.DOI: 10.6023/cjoc202107062 Previous Articles Next Articles
ARTICLES
王玉斌a, 郭成b, 陶晟a, 刘纪昌a,c, 赵基钢a,c, 刘宁a,*(), 代斌a,*()
收稿日期:
2021-07-29
修回日期:
2021-09-29
发布日期:
2022-05-10
通讯作者:
刘宁, 代斌
基金资助:
Yubin Wanga, Cheng Guob, Sheng Taoa, Jichang Liua,c, Jigang Zhaoa,c, Ning Liua(), Bin Daia()
Received:
2021-07-29
Revised:
2021-09-29
Published:
2022-05-10
Contact:
Ning Liu, Bin Dai
Supported by:
Share
Yubin Wang, Cheng Guo, Sheng Tao, Jichang Liu, Jigang Zhao, Ning Liu, Bin Dai. Basicity-Tuned Selectivity: Synthesis of Benzimidazolone and Benzodiazepine from N-Alkyl-N-(2-(pyridin-2-ylamino)-phenyl)formamides[J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1146-1162.
Entry | 2a, Condition Aa | 2a, Condition Bb | 3a, Condition Cc |
---|---|---|---|
1 | 2a, 80%; (3a, 0) | 2a, 82% | 3a, 68%; (2a, trace) |
2 | No K2S2O8, 2a, 0 No base, 2a, 8% | No PhI(OAc)2, 2a, 0 | No K2S2O8, 3a, 0 No base, 3a, trace |
3 | LiOt-Bu instead of NaOAc, 2a, 12% Na2CO3 instead of NaOAc, 2a, 10% KHCO3 instead of NaOAc, 2a, trace K2CO3 instead of NaOAc, 2a, 11% | — | LiOt-Bu instead of NaHCO3, 3a, 26% Na2CO3 instead of NaHCO3, 3a, 29% KHCO3 instead of NaHCO3, 3a, 10% K2CO3 instead of NaHCO3, 3a, 22% |
4 | DCE instead of MeCN, 2a, 30% DMSO instead of MeCN, 2a, 26% 1,4-Dioxane instead of MeCN, 2a, 35% MeCN/H2O (V∶V=1∶1), 2a, 36% | DCE instead of MeCN, 2a, 69% DMSO instead of MeCN, 2a, 80% 1,4-Dioxane instead of MeCN, 2a, 77% MeCN/H2O (V∶V=1∶1), 2a, 40% | DCE instead of MeCN, 3a, 40% DMSO instead of MeCN, 3a, 15% 1,4-Dioxane instead of MeCN, 3a, 10% MeCN/H2O (V∶V=1∶1), 3a, 26% |
5 | Na2S2O8 instead of K2S2O8, 2a, 39% (NH4)2S2O8 instead of K2S2O8, 2a, 45% DDQ instead of K2S2O8, 2a, 0 TBHP instead of K2S2O8, 2a, 0 | Na2S2O8 instead of PhI(OAc)2, 2a, 0 (NH4)2S2O8 instead of PhI(OAc)2, 2a, 0 DDQ instead of PhI(OAc)2, 2a, 0 TBHP instead of PhI(OAc)2, 2a, 0 | Na2S2O8 instead of K2S2O8, 3a, 38% (NH4)2S2O8 instead of K2S2O8, 3a, 32% DDQ instead of K2S2O8, 3a, 0 TBHP instead of K2S2O8, 3a, trace |
6 | K2S2O8 (1.0 equiv.), 2a, 65% K2S2O8 (1.5 equiv.), 2a, 80% K2S2O8 (2.0 equiv.), 2a, 79% | PhI(OAc)2 (1.0 equiv.), 2a, 47% PhI(OAc)2 (1.5 equiv.), 2a, 82% PhI(OAc)2 (2.0 equiv.), 2a, 84% | K2S2O8 (1.0 equiv.), 3a, 36% K2S2O8 (1.5 equiv.), 3a, 61% K2S2O8 (2.0 equiv.), 3a, 23% |
7 | NaOAc (1.5 equiv.), 2a, 69% NaOAc (2.0 equiv.), 2a, 80% NaOAc (3.0 equiv.), 2a, 78% | — | NaHCO3 (1.5 equiv.), 3a, 61% NaHCO3 (2.0 equiv.), 3a, 69% NaHCO3 (3.0 equiv.), 3a, 67% |
8 | 100 ℃ instead of 80 ℃, 2a, 80% 50 ℃ instead of 80 ℃, 2a, 58% | 50 ℃ instead of r.t., 2a, 85% | 100 ℃ instead of 80 ℃, 3a, 65% 50 ℃ instead of 80 ℃, 3a, 47% |
9 | — | — | Air, 3a, 59% |
10 | 48 h, 2a, 80% | 5 h, 2a, 80% | 48 h, 3a, 65% |
Entry | 2a, Condition Aa | 2a, Condition Bb | 3a, Condition Cc |
---|---|---|---|
1 | 2a, 80%; (3a, 0) | 2a, 82% | 3a, 68%; (2a, trace) |
2 | No K2S2O8, 2a, 0 No base, 2a, 8% | No PhI(OAc)2, 2a, 0 | No K2S2O8, 3a, 0 No base, 3a, trace |
3 | LiOt-Bu instead of NaOAc, 2a, 12% Na2CO3 instead of NaOAc, 2a, 10% KHCO3 instead of NaOAc, 2a, trace K2CO3 instead of NaOAc, 2a, 11% | — | LiOt-Bu instead of NaHCO3, 3a, 26% Na2CO3 instead of NaHCO3, 3a, 29% KHCO3 instead of NaHCO3, 3a, 10% K2CO3 instead of NaHCO3, 3a, 22% |
4 | DCE instead of MeCN, 2a, 30% DMSO instead of MeCN, 2a, 26% 1,4-Dioxane instead of MeCN, 2a, 35% MeCN/H2O (V∶V=1∶1), 2a, 36% | DCE instead of MeCN, 2a, 69% DMSO instead of MeCN, 2a, 80% 1,4-Dioxane instead of MeCN, 2a, 77% MeCN/H2O (V∶V=1∶1), 2a, 40% | DCE instead of MeCN, 3a, 40% DMSO instead of MeCN, 3a, 15% 1,4-Dioxane instead of MeCN, 3a, 10% MeCN/H2O (V∶V=1∶1), 3a, 26% |
5 | Na2S2O8 instead of K2S2O8, 2a, 39% (NH4)2S2O8 instead of K2S2O8, 2a, 45% DDQ instead of K2S2O8, 2a, 0 TBHP instead of K2S2O8, 2a, 0 | Na2S2O8 instead of PhI(OAc)2, 2a, 0 (NH4)2S2O8 instead of PhI(OAc)2, 2a, 0 DDQ instead of PhI(OAc)2, 2a, 0 TBHP instead of PhI(OAc)2, 2a, 0 | Na2S2O8 instead of K2S2O8, 3a, 38% (NH4)2S2O8 instead of K2S2O8, 3a, 32% DDQ instead of K2S2O8, 3a, 0 TBHP instead of K2S2O8, 3a, trace |
6 | K2S2O8 (1.0 equiv.), 2a, 65% K2S2O8 (1.5 equiv.), 2a, 80% K2S2O8 (2.0 equiv.), 2a, 79% | PhI(OAc)2 (1.0 equiv.), 2a, 47% PhI(OAc)2 (1.5 equiv.), 2a, 82% PhI(OAc)2 (2.0 equiv.), 2a, 84% | K2S2O8 (1.0 equiv.), 3a, 36% K2S2O8 (1.5 equiv.), 3a, 61% K2S2O8 (2.0 equiv.), 3a, 23% |
7 | NaOAc (1.5 equiv.), 2a, 69% NaOAc (2.0 equiv.), 2a, 80% NaOAc (3.0 equiv.), 2a, 78% | — | NaHCO3 (1.5 equiv.), 3a, 61% NaHCO3 (2.0 equiv.), 3a, 69% NaHCO3 (3.0 equiv.), 3a, 67% |
8 | 100 ℃ instead of 80 ℃, 2a, 80% 50 ℃ instead of 80 ℃, 2a, 58% | 50 ℃ instead of r.t., 2a, 85% | 100 ℃ instead of 80 ℃, 3a, 65% 50 ℃ instead of 80 ℃, 3a, 47% |
9 | — | — | Air, 3a, 59% |
10 | 48 h, 2a, 80% | 5 h, 2a, 80% | 48 h, 3a, 65% |
[1] |
(a) Poupaert, J.; Carato, P.; Colacino, E. Curr. Med. Chem. 2005, 12, 877.
pmid: 19788239 |
(b) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
doi: 10.1016/j.cbpa.2010.02.018 pmid: 19788239 |
|
(c) Lo, H. Y.; Nemoto, P. A.; Kim, J. M.; Hao, M.-H.; Qian, K. C.; Farrow, N. A.; Albaugh, D. R.; Fowler, D. M.; Schneiderman, R. D.; Michael August, E.; Martin, L.; Hill-Drzewi, M.; Pullen, S. S.; Takahashi, H.; De Lombaert, S. Bioorg. Med. Chem. Lett. 2011, 21, 4533.
doi: 10.1016/j.bmcl.2011.05.126 pmid: 19788239 |
|
(d) Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W. B.; Fedorov, O.; Morse, E. M.; Keates, T.; Hickman, T. T.; Felletar, I.; Philpott, M.; Munro, S.; Mckeown, M. R.; Wang, Y.; Christie, A. L.; West, N.; Cameron, M. J.; Schwartz, B.; Heightman, T. D.; La Thangue, N.; French, C. A.; Wiest, O.; Kung, A. L.; Knapp, S.; Bradner, J. E. Nature 2010, 468, 1067.
doi: 10.1038/nature09504 pmid: 19788239 |
|
(e) Králová, P.; Maloň, M.; Soural, M. ACS Comb. Sci. 2017, 19, 770.
doi: 10.1021/acscombsci.7b00134 pmid: 19788239 |
|
(f) Kundu, P.; Mondal, A.; Das, B.; Chowdhury, C. Adv. Synth. Catal. 2015, 357, 3737.
doi: 10.1002/adsc.201500661 pmid: 19788239 |
|
(g) Carlier, P. R.; Zhao, H. W.; Macquarrie-Hunter, S. L.; Deguzman, J. C.; Hsu, D. C. J. Am. Chem. Soc. 2006, 128, 15215.
pmid: 19788239 |
|
(h) Al-Tel, T. H.; Al-Qawasmeh, R. A.; Schmidt, M. F.; Al-Aboudi, A.; Rao, S. N.; Sabri, S. S.; Voelter, W. J. Med. Chem. 2009, 52, 6484.
doi: 10.1021/jm9008482 pmid: 19788239 |
|
(i) Wang, Y. Y.; Ling, B. P.; Liu, P.; Bi, S. W. Organometallics 2018, 37, 3035.
doi: 10.1021/acs.organomet.8b00406 pmid: 19788239 |
|
[2] |
Meanwell, N. A.; Sit, S.-Y.; Gao, J.; Boissard, C. G.; Lum-Ragan, J.; Dworetzky, S. I.; Gribkoff, V. K. Bioorg. Med. Chem. Lett. 1996, 6, 1641.
|
[3] |
(a) P. Barot,, K.; Nikolova, S.; Ivanov, I.; D. Ghate,, M. Mini-Rev. Med. Chem. 2013, 13, 1421.
doi: 10.2174/13895575113139990072 |
(b) Yu, K.-L.; Sin, N.; Civiello, R. L.; Wang, X. A.; Combrink, K. D.; Gulgeze, H. B.; Venables, B. L.; Wright, J. J. K.; Dalterio, R. A.; Zadjura, L.; Marino, A.; Dando, S.; D’arienzo, C.; Kadow, K. F.; Cianci, C. W.; Li, Z.; Clarke, J.; Genovesi, E. V.; Medina, I.; Lamb, L.; Colonno, R. J.; Yang, Z.; Krystal, M.; Meanwell, N. A. Bioorg. Med. Chem. Lett. 2007, 17, 895.
doi: 10.1016/j.bmcl.2006.11.063 |
|
(c) Yu, K.-L.; Wang, X. A.; Civiello, R. L.; Trehan, A. K.; Pearce, B. C.; Yin, Z. W.; Combrink, K. D.; Gulgeze, H. B.; Zhang, Y.; Kadow, K. F.; Cianci, C. W.; Clarke, J.; Genovesi, E. V.; Medina, I.; Lamb, L.; Wyde, P. R.; Krystal, M.; Meanwell, N. A. Bioorg. Med. Chem. Lett. 2006, 16, 1115.
doi: 10.1016/j.bmcl.2005.11.109 |
|
[4] |
(a) Monforte, A.-M.; Logoteta, P.; Ferro, S.; Luca, L. D.; Iraci, N.; Maga, G.; Clercq, E. D.; Pannecouque, C.; Chimirri, A. Biorg. Med. Chem. 2009, 17, 5962.
doi: 10.1016/j.bmc.2009.06.068 |
(b) Monforte, A.-M.; Logoteta, P.; Luca, L. D.; Iraci, N.; Ferro, S.; Maga, G.; De Clercq, E.; Pannecouque, C.; Chimirri, A. Biorg. Med. Chem. 2010, 18, 1702.
doi: 10.1016/j.bmc.2009.12.059 |
|
[5] |
Gustin, D. J.; Sehon, C. A.; Wei, J. M.; Cai, H.; Meduna, S. P.; Khatuya, H.; Sun, S. Q.; Gu, Y.; Jiang, W.; Thurmond, R. L.; Karlsson, L.; Edwards, J. P. Bioorg. Med. Chem. Lett. 2005, 15, 1687.
pmid: 15745822 |
[6] |
Kawamoto, H.; Nakashima, H.; Kato, T.; Arai, S.; Kamata, K.; Iwasawa, Y. Tetrahedron 2001, 57, 981.
doi: 10.1016/S0040-4020(00)01064-4 |
[7] |
Diao, X. Q.; Wang, Y. J.; Jiang, Y. W.; Ma, D. W. J. Org. Chem. 2009, 74, 7974.
doi: 10.1021/jo9017183 |
[8] |
Mclaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett. 2006, 8, 3311.
doi: 10.1021/ol061233j |
[9] |
Beyer, A.; Reucher, C. M. M.; Bolm, C. Org. Lett. 2011, 13, 2876.
doi: 10.1021/ol2008878 |
[10] |
(a) Meng, Y. G.; Wang, B. N.; Ren, L. N.; Zhao, Q. L.; Yu, W. Q.; Chang, J. B. New J. Chem. 2018, 42, 13790.
doi: 10.1039/C8NJ03166E |
(b) Yu, J. P.; Gao, C.; Song, Z. X.; Yang, H. J.; Fu, H. Eur. J. Org. Chem. 2015, 2015, 5869.
doi: 10.1002/ejoc.201500726 |
|
[11] |
Youn, S. W.; Kim, Y. H. Org. Lett. 2016, 18, 6140.
pmid: 27934371 |
[12] |
Xu, F.; Long, H.; Song, J. S.; Xu, H.-C. Angew. Chem., Int. Ed. 2019, 58, 9017.
doi: 10.1002/anie.201904931 |
[13] |
Li, J.-S.; Yang, P.-P.; Xie, X.-Y.; Jiang, S.; Tao, L.; Li, Z.-W.; Lu, C.-H.; Liu, W.-D. Adv. Synth. Catal. 2020, 362, 1977.
doi: 10.1002/adsc.202000198 |
[14] |
(a) Lima, H. M.; Lovely, C. J. Org. Lett. 2011, 13, 5736.
doi: 10.1021/ol2022438 |
(b) Hamm, M. L.; Billig, K. Org. Biomol. Chem. 2006, 4, 4068.
doi: 10.1039/B612597B |
|
(c) Bon, R. S.; Sprenkels, N. E.; Koningstein, M. M.; Schmitz, R. F.; De Kanter, F. J. J.; Dömling, A.; Groen, M. B.; Orru, R. V. A. Org. Biomol. Chem. 2008, 6, 130.
doi: 10.1039/B713065A |
|
[15] |
Li, D. Z.; Ollevier, T. Org. Lett. 2019, 21, 3572.
doi: 10.1021/acs.orglett.9b00973 |
[16] |
Chernyshev, V. M.; Khazipov, O. V.; Shevchenko, M. A.; Chernenko, A. Y.; Astakhov, A. V.; Eremin, D. B.; Pasyukov, D. V.; Kashin, A. S.; Ananikov, V. P. Chem. Sci. 2018, 9, 5564.
doi: 10.1039/c8sc01353e pmid: 30061988 |
[17] |
Ruiz, J.; Mesa, A. F. Chem.-Eur. J. 2014, 20, 102.
doi: 10.1002/chem.201303773 |
[18] |
Fader, L. D.; Bethell, R.; Bonneau, P.; Bös, M.; Bousquet, Y.; Cordingley, M. G.; Coulombe, R.; Deroy, P.; Faucher, A.-M.; Gagnon, A.; Goudreau, N.; Grand-Maître, C.; Guse, I.; Hucke, O.; Kawai, S. H.; Lacoste, J.-E.; Landry, S.; Lemke, C. T.; Malenfant, E.; Mason, S.; Morin, S.; O’meara, J.; Simoneau, B.; Titolo, S.; Yoakim, C. Bioorg. Med. Chem. Lett. 2011, 21, 398.
doi: 10.1016/j.bmcl.2010.10.131 pmid: 21087861 |
[19] |
Eltze, M.; Mutschler, E.; Lambrecht, G. Eur. J. Pharmacol. 1992, 211, 283.
pmid: 1377628 |
[20] |
Hargrave, K. D.; Proudfoot, J. R.; Grozinger, K. G.; Cullen, E.; Kapadia, S. R.; Patel, U. R.; Fuchs, V. U.; Mauldin, S. C.; Vitous, J.; Behnke, M. L.; Klunder, J. M.; Pal, K.; Skiles, J. W.; Mcneil, D. W.; Rose, J. M.; Chow, G. C.; Skoog, M. T.; Wu, J. C.; Schmidt, G.; Engel, W. W.; Eberlein, W. G.; Saboe, T. D.; Campbell, S. J.; Rosenthal, A. S.; Adams, J. J. Med. Chem. 1991, 34, 2231.
pmid: 1712395 |
[21] |
Pèpe, G.; Reboul, J.-P.; Oddon, Y. Eur. J. Med. Chem. 1989, 24, 1.
doi: 10.1016/0223-5234(89)90157-8 |
[22] |
(a) Yuan, S.; Yue, Y.-L.; Zhang, D.-Q.; Zhang, J.-Y.; Yu, B.; Liu, H.-M. Chem. Commun. 2020, 56, 11461.
doi: 10.1039/D0CC04875E |
(b) Hwang, J.; Borgelt, L.; Wu, P. ACS Comb. Sci. 2020, 22, 495.
doi: 10.1021/acscombsci.0c00173 |
|
(c) Velasco-Rubio, Á.; Varela, J. A.; Saá, C. Adv. Synth. Catal. 2020, 362, 4861.
doi: 10.1002/adsc.202000808 |
|
(d) Dagar, A.; Kim, I. Org. Biomol. Chem. 2020, 18, 9836.
doi: 10.1039/D0OB02002H |
|
(e) Archer, G. A.; Sternbach, L. H. Chem. Rev. 1968, 68, 747.
doi: 10.1021/cr60256a004 |
|
[23] |
(a) Chobanian, H. R.; Guo, Y.; Liu, P.; Lanza, T. J.; Chioda, M.; Chang, L.; Kelly, T. M.; Kan, Y. Q.; Palyha, O.; Guan, X.-M.; Marsh, D. J.; Metzger, J. M.; Raustad, K.; Wang, S.-P.; Strack, A. M.; Gorski, J. N.; Miller, R.; Pang, J. M.; Lyons, K.; Dragovic, J.; Ning, J. G.; Schafer, W. A.; Welch, C. J.; Gong, X. Y.; Gao, Y.-D.; Hornak, V.; Reitman, M. L.; Nargund, R. P.; Lin, L. S. Biorg. Med. Chem. 2012, 20, 2845.
doi: 10.1016/j.bmc.2012.03.029 |
(b) Liu, P.; Lanza, T. J.; Chioda, M.; Jones, C.; Chobanian, H. R.; Guo, Y.; Chang, L.; Kelly, T. M.; Kan, Y. Q.; Palyha, O.; Guan, X.-M.; Marsh, D. J.; Metzger, J. M.; Ramsay, K.; Wang, S.-P.; Strack, A. M.; Miller, R.; Pang, J. M.; Lyons, K.; Dragovic, J.; Ning, J. G.; Schafer, W. A.; Welch, C. J.; Gong, X. Y.; Gao, Y.-D.; Hornak, V.; Ball, R. G.; Tsou, N.; Reitman, M. L.; Wyvratt, M. J.; Nargund, R. P.; Lin, L. S. ACS Med. Chem. Lett. 2011, 2, 933.
doi: 10.1021/ml200207w |
|
(c) Matsufuji, T.; Shimada, K.; Kobayashi, S.; Ichikawa, M.; Kawamura, A.; Fujimoto, T.; Arita, T.; Hara, T.; Konishi, M.; Abe-Ohya, R.; Izumi, M.; Sogawa, Y.; Nagai, Y.; Yoshida, K.; Abe, Y.; Kimura, T.; Takahashi, H. Biorg. Med. Chem. 2015, 23, 89.
doi: 10.1016/j.bmc.2014.11.018 |
|
(d) Failli, A. A.; Shumsky, J. S.; Steffan, R. J.; Caggiano, T. J.; Williams, D. K.; Trybulski, E. J.; Ning, X.; Lock, Y.; Tanikella, T.; Hartmann, D.; Chan, P. S.; Park, C. H. Bioorg. Med. Chem. Lett. 2006, 16, 954.
doi: 10.1016/j.bmcl.2005.10.107 |
|
[24] |
Maddess, M. L.; Li, C. M. Organometallics 2019, 38, 81.
doi: 10.1021/acs.organomet.8b00322 |
[25] |
Novelli, F.; Sparatore, A.; Tasso, B.; Sparatore, F. Bioorg. Med. Chem. Lett. 1999, 9, 3031.
pmid: 10571170 |
[26] |
Shi, F. Q.; Xu, X. X.; Zheng, L. Y.; Dang, Q.; Bai, X. J. Comb. Chem. 2008, 10, 158.
doi: 10.1021/cc7002039 |
[27] |
(a) Zhu, H. Q.; Shang, T. B.; Lu, Z. H.; Luo, F.; Zhu, G. G. Chin. J. Org. Chem. 2020, 40, 3410. (in Chinese)
doi: 10.6023/cjoc202005066 |
( 朱海倩, 商甜波, 卢增辉, 罗芳, 朱钢国, 有机化学, 2020, 40, 3410.)
doi: 10.6023/cjoc202005066 |
|
(b) Tian, S. H.; Luo, T.; Zhu, Y. P.; Wan, J.-P. Chin. Chem. Lett. 2020, 31, 3073.
doi: 10.1016/j.cclet.2020.07.042 |
|
(c) Fu, L. Q.; Liu, Y. Y.; Wan, J.-P. Org. Lett. 2021, 23, 4363.
doi: 10.1021/acs.orglett.1c01301 |
|
(d) Yu, Q.; Liu, Y. Y.; Wan, J.-P. Org. Chem. Front. 2020, 7, 2770.
doi: 10.1039/D0QO00855A |
|
(e) Chen, Q. W.; Yang, Y. C.; Wang, X.; Zhang, Q.; Li, D. Chin. J. Org. Chem. 2020, 40, 451. (in Chinese)
|
|
( 陈倩雯, 杨耀成, 王霞, 张谦, 李栋, 有机化学, 2020, 40, 451.)
|
|
(f) Zhao, B. L.; Liu, Y. Y. Synthesis 2020, 52, 3211.
doi: 10.1055/s-0040-1707124 |
|
[28] |
Tao, S.; Bu, Q. Q.; Shi, Q. Q.; Wei, D. H.; Dai, B.; Liu, N. Chem. Eur. J. 2020, 26, 3252.
doi: 10.1002/chem.201905828 |
[29] |
(a) Karthikeyan, J.; Cheng, C.-H. Angew. Chem., Int. Ed. 2011, 50, 9880.
doi: 10.1002/anie.201104311 |
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
doi: 10.1021/cr900184e |
|
(c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
doi: 10.1002/anie.200806273 |
|
(d) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792.
doi: 10.1002/anie.200902996 |
|
(e) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
doi: 10.1021/cr100280d |
|
(f) Liu, C.; Zhang, H.; Shi, W.; Lei, A. W. Chem. Rev. 2011, 111, 1780.
doi: 10.1021/cr100379j |
|
[30] |
(a) Liu, Q.; Xie, G. Q.; Wang, Q.; Mo, Z. D.; Li, C.; Ding, S. J.; Wang, X. X. Tetrahedron 2019, 75, 130490.
doi: 10.1016/j.tet.2019.130490 |
(b) Minisci, F.; Citterio, A.; Giordano, C. Acc. Chem. Res. 1983, 16, 27.
doi: 10.1021/ar00085a005 |
|
(c) Yan, K.; Yang, D. S.; Wei, W.; Wang, F.; Shuai, Y. Y.; Li, Q. N.; Wang, H. J. Org. Chem. 2015, 80, 1550.
doi: 10.1021/jo502474z |
|
(d) Mandal, S.; Bera, T.; Dubey, G.; Saha, J.; Laha, J. K. ACS Catal. 2018, 8, 5085.
doi: 10.1021/acscatal.8b00743 |
|
(e) Zhang, Z.; Jia, C.; Kong, X.; Hussain, M.; Liu, Z.; Liang, W.; Jiang, L.; Jiang, H.; Ma, J. ACS Sustainable Chem. Eng. 2020, 8, 16463.
doi: 10.1021/acssuschemeng.0c05118 |
|
(f) Zhu, Y. C.; Huang, K. M.; Pan, J.; Qiu, X.; Luo, X.; Qin, Q. X.; Wei, J. L.; Wen, X. J.; Zhang, L. Z.; Jiao, N. Nat. Commun. 2018, 9, 2625.
doi: 10.1038/s41467-018-05014-w |
|
[31] |
(a) Shi, Z. Z.; Glorius, F. Chem. Sci. 2013, 4, 829.
doi: 10.1039/C2SC21823B |
(b) Wang, X. Y.; Wang, S. C.; Gao, Y. M.; Sun, H.; Liang, X. A.; Bu, F. X.; Abdelilah, T.; Lei, A. W. Org. Lett. 2020, 22, 5429.
doi: 10.1021/acs.orglett.0c01796 |
|
(c) Chen, Z. C.; Zhang, H.; Zhou, S. F.; Cui, X. L. Chin. J. Org. Chem. 2020, 40, 3866. (in Chinese)
doi: 10.6023/cjoc202007005 |
|
( 陈志超, 张红, 周树锋, 崔秀灵, 有机化学, 2020, 40, 3866.)
doi: 10.6023/cjoc202007005 |
|
[32] |
(a) Yi, H.; Zhang, G. T.; Wang, H. M.; Huang, Z. Y.; Wang, J.; Singh, A. K.; Lei, A. W. Chem. Rev. 2017, 117, 9016.
doi: 10.1021/acs.chemrev.6b00620 |
(b) Pan, G.-A.; Li, Y.; Li, J.-H. Org. Chem. Front. 2020, 7, 2486.
doi: 10.1039/D0QO00651C |
|
[33] |
(a) Hollóczki, O.; Terleczky, P.; Szieberth, D.; Mourgas, G.; Gudat, D.; Nyulászi, L. J. Am. Chem. Soc. 2011, 133, 780.
doi: 10.1021/ja103578y pmid: 21174475 |
(b) Tao, S.; Guo, C.; Liu, N.; Dai, B. Organometallics 2017, 36, 4432.
doi: 10.1021/acs.organomet.7b00651 pmid: 21174475 |
|
[34] |
(a) Khan, D.; Mukhtar, S.; Alsharif, M. A.; Alahmdi, M. I.; Ahmed, N. Tetrahedron Lett. 2017, 58, 3183.
doi: 10.1016/j.tetlet.2017.07.018 |
(b) Prasad, V.; Kale, R. R.; Mishra, B. B.; Kumar, D.; Tiwari, V. K. Org. Lett. 2012, 14, 2936.
doi: 10.1021/ol3012315 |
|
[35] |
Chen, F.; Chen, D. T.; Shi, L.; Liu, N.; Dai, B. J. CO2 Util. 2016, 16, 391.
|
[36] |
Wang, Y.-B.; Liu, B.-Y.; Bu, Q. Q.; Dai, B.; Liu, N. Adv. Synth. Catal. 2020, 362, 2930.
doi: 10.1002/adsc.202000186 |
[1] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[2] | Jie Liu, Feng Han, Shuangyan Li, Tianyu Chen, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic Olefination of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 573-583. |
[3] | Jianghu Dong, Liangming Xuan, Chi Wang, Chenxi Zhao, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fen'er Chen. Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 111-136. |
[4] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
[5] | Yijun Shi, Xinyue Sun, Han Cao, Fusheng Bie, Jie Ma, Zhe Liu, Xingshun Cong. Thioesterification of Esters with Primary Aliphatic Thiols at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2499-2505. |
[6] | Zhongrong Xu, Jieping Wan, Yunyun Liu. Transition Metal-Free C—H Thiocyanation and Selenocyanation Based on Thermochemical, Photocatalytic and Electrochemical Process [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2425-2446. |
[7] | Jiao Qin, Jie Chen, Yan Su. Synthesis of 2,2,6,6-Tetramethylpiperidin-1-yl-2-(2-cyanophenyl)-acetate by Transition Metal-Free Radical Cleavage Reaction from α-Bromoindanone [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2171-2177. |
[8] | Rui Wang, Lang Gao, Cen Zhou, Xiao Zhang. Haloperfluoroalkylation of Unactivated Terminal Alkenes over Phenylphenothiazine-Based Porous Organic Polymers [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1136-1145. |
[9] | Biao Ma, Miaomiao Zhang, Zhanyu Li, Jinsong Peng, Chunxia Chen. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 455-470. |
[10] | Jing Sun, Mengmeng Zhang, Xiaolong Guo, Qi Wang, Luyao Wang. Synthesis of Diaryl Selenium Compounds without Transition-Metal Catalyst [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4251-4260. |
[11] | Duoduo Xiao, Jiantao Zhang, Peng Zhou, Weibing Liu. Metal-Free α-C(sp3)—H Methylenation of Aryl Ketones to Form γ-Keto Sulfoxides with Dimethyl Sulfoxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3900-3906. |
[12] | Qiyang Li, Haiyan Zhang, Wenbo Liu. Research Progress in Transition-Metal-Free C—Si Bond Formation [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3470-3490. |
[13] | Tianyu Chen, Feng Han, Shuangyan Li, Jianping Liu, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic C-Alkylation of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2914-2924. |
[14] | Fangshao Li, Jing Xiao, Xiaofang Wu, Xiaoyi Wang, Jinfeng Deng, Zilong Tang. Metal-Free Formation of 2-Substitued Benzoxazoles with Amides and Esters [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1778-1785. |
[15] | Zhixin Zhang, Tongyi Zhai, Bohan Zhu, Pengcheng Qian, Longwu Ye. Synthesis of Tetrahydroindole Derivatives via Metal-Free Intramolecular [4+2] Annulation of Ynamides [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1501-1508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||