Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (1): 137-147.DOI: 10.6023/cjoc202306010 Previous Articles Next Articles
REVIEWS
收稿日期:
2023-06-12
修回日期:
2023-08-14
发布日期:
2023-08-30
基金资助:
Qianfan Zhaoa,b(), Yongzheng Chena,b, Shiming Zhanga,b
Received:
2023-06-12
Revised:
2023-08-14
Published:
2023-08-30
Contact:
*E-mail: Supported by:
Share
Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147.
[1] |
Ge, S.; Liu, X.; Liu, J.; Liu, H.; Liu, H.; Chen, X.; Wang, G.; Chen, J.; Zhang, G.; Zhang, Y.; Li, J. Fuel 2022, 314, 123061.
doi: 10.1016/j.fuel.2021.123061 |
[2] |
Wan, L.; Miao, S.; He, Z.; Li, X.; Zhou, X.; Gao, F. ACS Omega 2021, 6, 23347.
doi: 10.1021/acsomega.1c03103 |
[3] |
Shen, X.; Yang, J.; Zhang, J.; Jiang, H.; Du, Y.; Chen, R. Ind. Eng. Chem. Res. 2023, 62, 279.
doi: 10.1021/acs.iecr.2c03785 |
[4] |
Yu, Z.; Li, Y.; Torres-Pinto, A.; LaGrow, A. P.; Diaconescu, V. M.; Simonelli, L.; Sampaio, M. J.; Bondarchuk, O.; Amorim, I.; Araujo, A.; Silva, A. M. T.; Silva, C. G.; Faria, J. L.; Liu, L. Appl. Catal., B: Environ. 2022, 310, 121318.
doi: 10.1016/j.apcatb.2022.121318 |
[5] |
Ge, M.; Zhang, X.; Xia, S.; Luo, W.; Jin, Y.; Chen, Q.; Nie, H.; Yang, Z. Chin. J. Chem. 2021, 39, 2113.
doi: 10.1002/cjoc.v39.8 |
[6] |
Hu, X.; Guo, F.; Zhu, R.; Zhou, B.; Zhang, T.; Fang, L. Chin. J. Org. Chem. 2023, 43, 2239 (in Chinses).
doi: 10.6023/cjoc202209012 |
(户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真, 有机化学, 2023, 43, 2239.)
|
|
[7] |
Maurer, F.; Beck, A.; Jelic, J.; Wang, W.; Mangold, S.; Stehle, M.; Wang, D.; Dolcet, P.; Gänzler, A. M.; Kübel, C.; Studt, F.; Casapu, M.; Grunwaldt, J.-D. ACS Catal. 2022, 12, 2473.
doi: 10.1021/acscatal.1c04565 |
[8] |
Mohammadi, A.; Farzi, A.; Thurner, C.; Klötzer, B.; Schwarz, S.; Bernardi, J.; Niaei, A.; Penner, S. Appl. Catal., B: Environ. 2022, 307, 121160.
doi: 10.1016/j.apcatb.2022.121160 |
[9] |
Ai, X.; Chen, H.; Liang, X.; Shi, L.; Zhang, M.; Zhang, K.; Zou, Y.; Zou, X. ACS Catal. 2022, 12, 2967.
doi: 10.1021/acscatal.1c05687 |
[10] |
Pang, S.; Liu, F.; Zhang, Y.; Dong, Z.; Su, Q.; Wang, W.; Li, Z.; Zhou, F.; Wang, Y. ACS Sustainable Chem. Eng. 2021, 9, 9062.
doi: 10.1021/acssuschemeng.1c02322 |
[11] |
Zheng, P.; Jiang, W.; Qin, Q.; Li, D. Molecules (Basel, Switzerland) 2021, 26, 5199.
doi: 10.3390/molecules26175199 |
[12] |
Modekwe, H. U.; Mamo, M.; Moothi, K.; Daramola, M. O. Mater. Today: Proc. 2021, 38, 549.
|
[13] |
Jiang, J.; Zheng, X.; Meng, Y.; He, W.; Chen, Y.; Zhuang, Q.; Yuan, J.; Ju, Z.; Zhang, X. Acta Chim. Sinica 2023, 81, 319 (in Chinese).
doi: 10.6023/A22120494 |
(蒋江民, 郑欣冉, 孟雅婷, 贺文杰, 陈亚鑫, 庄全超, 袁加仁, 鞠治成, 张校刚, 化学学报, 2023, 81, 319.)
|
|
[14] |
Choudhary, P.; Bahuguna, A.; Kumar, A.; Dhankhar, S. S.; Nagaraja, C. M.; Krishnan, V. Green Chem. 2020, 22, 5084.
doi: 10.1039/D0GC01123A |
[15] |
Nosan, M.; Lffler, M.; Jerman, I.; Kolar, M.; Genorio, B. ACS Appl. Energy Mater. 2021, 4, 3593.
doi: 10.1021/acsaem.1c00026 |
[16] |
Zeng, Y.; Lyu, P.; Cai, Y.; Gao, F.; Zhuo, O.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica. 2021, 79, 539 (in Chinese).
doi: 10.6023/A20110527 |
(曾誉, 吕品, 蔡跃进, 高福杰, 卓欧, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2021, 79, 539.)
|
|
[17] |
Singla, S.; Sharma, S.; Basu, S.; Shetti, N. P.; Reddy, K. R. FlatChem. 2020, 24, 100200.
doi: 10.1016/j.flatc.2020.100200 |
[18] |
Yi, H.; Nakabayashi, K.; Yoon, S.-H.; Miyawaki, J. RSC Adv. 2022, 12, 2558.
doi: 10.1039/D1RA08395C |
[19] |
Zhao, S.; Lu, X.; Wang, L.; Gale, J.; Amal, R. Adv. Mater. 2019, 31, 1805367.
doi: 10.1002/adma.v31.13 |
[20] |
Liu, D.; Dai, L.; Lin, X.; Chen, J.-F.; Zhang, J.; Feng, X.; Müllen, K.; Zhu, X.; Dai, S. Adv. Mater. 2019, 31, 1804863.
doi: 10.1002/adma.v31.13 |
[21] |
Zhao, S.; Wang, D.-W.; Amal, R.; Dai, L. Adv. Mater. 2019, 31, 1801526.
doi: 10.1002/adma.v31.9 |
[22] |
Ahmad, M. S.; Nishina, Y. Nanoscale. 2020, 12, 12210.
doi: 10.1039/D0NR02984J |
[23] |
Messele, S. A.; Chelme-Ayala, P.; Gamal El-Din, M. Catal. Today. 2021, 361, 102.
doi: 10.1016/j.cattod.2020.01.042 |
[24] |
Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Su, D. S. Science. 2008, 322, 73.
doi: 10.1126/science.1161916 |
[25] |
Jiang, T.; Jiang, W.; Li, Y.; Xu, Y.; Zhao, M.; Deng, M.; Wang, Y. Carbon 2021, 180, 92.
doi: 10.1016/j.carbon.2021.04.058 |
[26] |
Mollar-Cuni, A.; Ventura-Espinosa, D.; Martín, S.; García, H.; Mata, J. A. ACS Catal. 2021, 11, 14688.
doi: 10.1021/acscatal.1c04649 |
[27] |
Teh, W. P.; Obenschain, D. C.; Black, B. M.; Michael, F. E. J. Am. Chem. Soc. 2020, 142, 16716.
doi: 10.1021/jacs.0c06997 |
[28] |
Huang, T.; Fu, Y.; Peng, Q.; Yu, C.; Zhu, J.; Yu, A.; Wang, X. Appl. Surf. Sci. 2019, 480, 888.
doi: 10.1016/j.apsusc.2019.03.035 |
[29] |
Chen, S. S.; Carraher, J. M.; Tuci, G.; Rossin, A.; Raman, C. A.; Luconi, L.; Tsang, D. C. W.; Giambastiani, G.; Tessonnier, J.-P. ACS Sustainable Chem. Eng. 2019, 7, 16959.
doi: 10.1021/acssuschemeng.9b04067 |
[30] |
Yuan, J.; Wang, Z.; Liu, J.; Li, J.; Chen, J. Environ. Sci. Technol. 2023, 57, 606.
doi: 10.1021/acs.est.2c06289 |
[31] |
Enders, L.; Casadio, D. S.; Aikonen, S.; Lenarda, A.; Wirtanen, T.; Hu, T.; Hietala, S.; Ribeiro, L. S.; Pereira, M. F. R.; Helaja, J. Catal. Sci. Technol. 2021, 11, 5962.
doi: 10.1039/D1CY00878A |
[32] |
Anthore-Dalion, L.; Nicolas, E.; Cantat, T. ACS Catal. 2019, 9, 11563.
doi: 10.1021/acscatal.9b04434 |
[33] |
Yang, J.-H.; Sun, G.; Gao, Y.; Zhao, H.; Tang, P.; Tan, J.; Lu, A.-H.; Ma, D. Energy Environ. Sci. 2013, 6, 793.
doi: 10.1039/c3ee23623d |
[34] |
Dhakshinamoorthy, A.; Primo, A.; Concepcion, P.; Alvaro, M.; Garcia, H. Chemistry 2013, 19, 7547.
|
[35] |
Dreyer, D. R.; Jia, H.-P.; Todd, A. D.; Geng, J.; Bielawski, C. W. Org. Biomol. Chem. 2011, 9, 7292.
doi: 10.1039/c1ob06102j |
[36] |
Zhang, J.; Chen, S.; Chen, F.; Xu, W.; Deng, G.-J.; Gong, H. Adv. Synth. Catal. 2017, 359, 2358.
doi: 10.1002/adsc.v359.14 |
[37] |
Tanaka, T.; Okunaga, K.-i.; Hayashi, M. Tetrahedron Lett. 2010, 51, 4633.
doi: 10.1016/j.tetlet.2010.06.118 |
[38] |
Long, J.; Xie, X.; Xu, J.; Gu, Q.; Chen, L.; Wang, X. ACS Catal. 2012, 2, 622.
doi: 10.1021/cs3000396 |
[39] |
Grant, J. T.; Carrero, C. A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S. P.; Specht, S. E.; McDermott, W. P.; Chieregato, A.; Hermans, I. Science 2016, 354, 1570.
doi: 10.1126/science.aaf7885 |
[40] |
Rozanska, X.; Fortrie, R.; Sauer, J. J. Phys. Chem. C 2007, 111, 6041.
doi: 10.1021/jp071409e |
[41] |
Grabow, L. C.; Mavrikakis, M. ACS Catal. 2011, 1, 365.
doi: 10.1021/cs200055d |
[42] |
Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1334.
|
[43] |
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101.
doi: 10.1038/nnano.2007.451 |
[44] |
Gao, Y.; Hu, G.; Zhong, J.; Shi, Z.; Zhu, Y.; Su, D. S.; Wang, J.; Bao, X.; Ma, D. Angew. Chem., Int. Ed. 2013, 52, 2109.
doi: 10.1002/anie.v52.7 |
[45] |
Zhu, Y.-N.; Cao, C.-Y.; Jiang, W.-J.; Yang, S.-L.; Hu, J.-S.; Song, W.-G.; Wan, L.-J. J. Mater. Chem. A. 2016, 4, 18470.
doi: 10.1039/C6TA08335H |
[46] |
Hou, S.; Chen, N.; Zhang, P.; Dai, S. Green Chem. 2019, 21, 1455.
doi: 10.1039/C8GC03772H |
[47] |
Vermeulen, L. A.; Thompson, M. E. Nature 1992, 358, 656.
doi: 10.1038/358656a0 |
[48] |
Geim, A. K. Science 2009, 324, 1530.
doi: 10.1126/science.1158877 |
[49] |
Stankovich, S.; Dikin, D. A.; Dommett, G.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S.; Ruoff, R. S. Nature 2006, 442, 282.
doi: 10.1038/nature04969 |
[50] |
Dreyer, D. R.; Jia, H. P.; Bielawski, C. W. Angew. Chem., Int. Ed. 2010, 49, 6813.
doi: 10.1002/anie.v49:38 |
[51] |
Li, X.; Yuan, Z.; Liu, Y.; Yang, H.; Nie, J.; Wang, G.; Liu, B. ChemSusChem 2022, 15, 1.
|
[52] |
Huang, J.; Bai, J.; Feng, J.; Jiang, Q.; Yang, G.; Wang, H.; Yu, H.; Zhang, Q.; Cao, Y.; Peng, F. ACS Sustainable Chem. Eng. 2022, 10, 6713.
doi: 10.1021/acssuschemeng.2c00825 |
[53] |
Cai, Z.; Liu, D.; Huang, J.; Feng, J.; Wang, H.; Yang, G.; Peng, F.; Cao, Y.; Yu, H. Ind. Eng. Chem. Res. 2022, 61, 2037.
doi: 10.1021/acs.iecr.1c04407 |
[54] |
Gao, Y.; Ma, D.; Wang, C.; Guan, J.; Bao, X. Chem. Commun. 2011, 47, 2432.
doi: 10.1039/C0CC04420B |
[55] |
Yang, F.; Chi, C.; Wang, C.; Wang, Y.; Li, Y. Green Chem. 2016, 18, 4254.
doi: 10.1039/C6GC00222F |
[56] |
Wei, Q.; Qin, F.; Ma, Q.; Shen, W. Carbon 2019, 141, 542.
doi: 10.1016/j.carbon.2018.09.087 |
[57] |
Wu, S.; Wen, G.; Wang, J.; Rong, J.; Zong, B.; Schlögl, R.; Su, D. S. Catal. Sci. Technol. 2014, 4, 4183.
doi: 10.1039/C4CY00811A |
[58] |
Choi, C. H.; Lim, H.-K.; Chung, M. W.; Park, J. C.; Shin, H.; Kim, H.; Woo, S. I. J. Am. Chem. Soc. 2014, 136, 9070.
doi: 10.1021/ja5033474 |
[59] |
Zhang, J.; Li, S.; Deng, G.-J.; Gong, H. ChemCatChem 2018, 10, 376.
doi: 10.1002/cctc.v10.2 |
[60] |
Ghorpade, P. V.; Pethsangave, D. A.; Some, S.; Shankarling, G. S. J. Org. Chem. 2018, 83, 7388.
doi: 10.1021/acs.joc.8b00188 |
[61] |
Rodrigo, E.; García Alcubilla, B.; Sainz, R.; Fierro, J. L. G.; Ferritto, R.; Cid, M. B. Chem. Commun. 2014, 50, 6270.
doi: 10.1039/c4cc02701a |
[62] |
Primo, A.; Franconetti, A.; Magureanu, M.; Mandache, N. B.; Bucur, C.; Rizescu, C.; Cojocaru, B.; Parvulescu, V. I.; Garcia, H. Green Chem. 2018, 20, 2611.
doi: 10.1039/C7GC03397D |
[63] |
Kawashita, Y.; Yanagi, J.; Fujii, T.; Hayashi, M. Bull. Chem. Soc. Jpn. 2009, 82, 482.
doi: 10.1246/bcsj.82.482 |
[64] |
Hu, F.; Patel, M.; Luo, F.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. J. Am. Chem. Soc. 2015, 137, 14473.
doi: 10.1021/jacs.5b09636 |
[65] |
Meng, G.; Patel, M.; Luo, F.; Li, Q.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. Chem. Commun. 2019, 55, 5379.
doi: 10.1039/C9CC02578B |
[66] |
Zhang, J.; Yang, Y.; Fang, J.; Deng, G. J.; Gong, H. Chem. Asian J. 2017, 12, 2524.
doi: 10.1002/asia.v12.19 |
[67] |
Majumdar, B.; Sarma, D.; Bhattacharya, T.; Sarma, T. K. ACS Sustainable Chem. Eng. 2017, 5, 9286.
doi: 10.1021/acssuschemeng.7b02267 |
[68] |
Shaikh, M.; Sahu, A.; Kiran Kumar, A.; Sahu, M.; Singh, S. K.; Ranganath, K. V. S. Green Chem. 2017, 19, 4533.
doi: 10.1039/C7GC02227A |
[69] |
Fang, J.; Peng, Z.; Yang, Y.; Wang, J.; Guo, J.; Gong, H. Asian J. Org. Chem. 2018, 7, 355.
doi: 10.1002/ajoc.v7.2 |
[70] |
Su, C.; Acik, M.; Takai, K.; Lu, J.; Hao, S.-j.; Zheng, Y.; Wu, P.; Bao, Q.; Enoki, T.; Chabal, Y. J.; Ping Loh, K. Nat. Commun. 2012, 3, 1298.
doi: 10.1038/ncomms2315 |
[1] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[2] | Ran Zhou, Chunmei Yuan, Tao Zhang, Piao Mao, Yi Liu, Kaini Meng, Hui Xin, Wei Xue. Design, Synthesis and Bioactivity of Chalcone Derivative Containing Quinazolinone [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3196-3209. |
[3] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
[4] | Qian Dou, Taimin Wang, Lijing Fang, Hongbin Zhai, Bin Cheng. Recent Development of Photoinduced Iron-Catalysis in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1386-1415. |
[5] | Shiquan Gao, Chuangjun Liu, Junfeng Yang, Junliang Zhang. Cobalt-Catalyzed Electrochemical Reductive Coupling of Alkynes and Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1559-1565. |
[6] | Linsheng Bai, Peng Hong, Anguo Ying. Research Progress of Functional Polyacrylonitrile Fiber in Promoting Organic Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1241-1270. |
[7] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
[8] | Biao Ma, Miaomiao Zhang, Zhanyu Li, Jinsong Peng, Chunxia Chen. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 455-470. |
[9] | Silin Chen, Yunhui Yang, Chao Chen, Congyang Wang. Advances in Transition-Metal-Catalyzed Keto Carbonyl-Directed C—H Bond Functionalization Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 1-16. |
[10] | Runye Gao, Lingling Zuo, Fang Wang, Chuanying Li, Huajiang Jiang, Pinhua Li, Lei Wang. Recent Advances in Controllable Organic Reactions Induced by Visible Light without External Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 1883-1903. |
[11] | Kexin Li, Qingyuan Yang, Pengpeng Zhang, Wuyuan Zhang. Research Progress of Peroxygenase-Catalyzed Reactions Driven by in-situ Generation of H2O2 [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 732-741. |
[12] | Weichun Huang, Xinyu Ding, You Zi. Research Progress of Vinyl/Aryl Phosphonium Salts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 471-486. |
[13] | Shaohui Yang, Jingcheng Song, Daoqing Dong, Hao Yang, Mengyu Zhou, Huishu Zhang, Zuli Wang. Progress of N-Amino Pyridinium Salts as Nitrogen Radical Precursors in Visible Light Induced C—N Bond Formation Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4099-4110. |
[14] | Siyu Mu, Hongxia Li, Zhilin Wu, Junmei Peng, Jinyang Chen, Weimin He. Electrocatalytic Three-Component Synthesis of 4-Bromopyrazoles from Acetylacetone, Hydrazine and Diethyl Bromomalonate [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4292-4299. |
[15] | Rongnan Yi, Dongxian Liu, Qilin Wu, Mingming Zhao, Yong Wang, Zheng Wang. Electrochemical Oxidated-Iodide Promoted α-H Aryl(alkyl)selenation of Acetone for the Preparation of α-Aryl(alkyl)selenoacetones [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3726-3732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||