Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (4): 1210-1215.DOI: 10.6023/cjoc202110022 Previous Articles Next Articles
ARTICLES
许丽梅a, 卢林燕a, 蔡尽忠a, 冯亚栋a,b,*(), 崔秀灵b,*()
收稿日期:
2021-10-15
修回日期:
2021-11-17
发布日期:
2021-12-02
通讯作者:
冯亚栋, 崔秀灵
基金资助:
Limei Xua, Linyan Lua, Jinzhong Caia, Yadong Fenga,b(), Xiuling Cuib()
Received:
2021-10-15
Revised:
2021-11-17
Published:
2021-12-02
Contact:
Yadong Feng, Xiuling Cui
Supported by:
Share
Limei Xu, Linyan Lu, Jinzhong Cai, Yadong Feng, Xiuling Cui. Construction of Diaminobenzoquinone Imines through Radical Coupling of Aminophenols with Amine under UV-Light[J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1210-1215.
Entry | UV-light (λmax, P) | TBHP/ equiv. | Solvent | T/℃ | Yiledb/% | |
---|---|---|---|---|---|---|
1 | 365 nm, 250 W | 3.0 | Toluene | 80 | 85 | |
2 | — | 3.0 | Toluene | 80 | 35 | |
3c | 365 nm, 250 W | 3.0 | Toluene | 80 | 82 | |
4d | 365 nm, 250 W | 3.0 | Toluene | 80 | 85 | |
5 | 365 nm, 200 W | 3.0 | Toluene | 80 | 71 | |
6 | 365 nm, 150 W | 3.0 | Toluene | 80 | 62 | |
7 | 365 nm, 250 W | — | Toluene | 80 | 21 | |
8 | 365 nm, 250 W | 2.0 | Toluene | 80 | 51 | |
9 | 365 nm, 250 W | 1.0 | Toluene | 80 | 30 | |
10 | 365 nm, 250 W | 4.0 | Toluene | 80 | 96 | |
11 | 365 nm, 250 W | 5.0 | Toluene | 80 | 96 | |
12 | 365 nm, 250 W | 6.0 | Toluene | 80 | 92 | |
13 | 365 nm, 250 W | 4.0 | DMSO | 80 | Trace | |
14 | 365 nm, 250 W | 4.0 | DMF | 80 | 33 | |
15 | 365 nm, 250 W | 4.0 | NMP | 80 | 65 | |
16 | 365 nm, 250 W | 4.0 | Dioxane | 80 | 61 | |
17 | 365 nm, 250 W | 4.0 | CH3OH | 80 | Trace | |
18 | 365 nm, 250 W | 4.0 | CH3CN | 80 | 27 | |
19 | 365 nm, 250 W | 4.0 | Toluene | 90 | 89 | |
20 | 365 nm, 250 W | 4.0 | Toluene | 70 | 86 | |
21e | 365 nm, 250 W | 4.0 | Toluene | 80 | 95 | |
22f | 365 nm, 250 W | 4.0 | Toluene | 80 | 87 |
Entry | UV-light (λmax, P) | TBHP/ equiv. | Solvent | T/℃ | Yiledb/% | |
---|---|---|---|---|---|---|
1 | 365 nm, 250 W | 3.0 | Toluene | 80 | 85 | |
2 | — | 3.0 | Toluene | 80 | 35 | |
3c | 365 nm, 250 W | 3.0 | Toluene | 80 | 82 | |
4d | 365 nm, 250 W | 3.0 | Toluene | 80 | 85 | |
5 | 365 nm, 200 W | 3.0 | Toluene | 80 | 71 | |
6 | 365 nm, 150 W | 3.0 | Toluene | 80 | 62 | |
7 | 365 nm, 250 W | — | Toluene | 80 | 21 | |
8 | 365 nm, 250 W | 2.0 | Toluene | 80 | 51 | |
9 | 365 nm, 250 W | 1.0 | Toluene | 80 | 30 | |
10 | 365 nm, 250 W | 4.0 | Toluene | 80 | 96 | |
11 | 365 nm, 250 W | 5.0 | Toluene | 80 | 96 | |
12 | 365 nm, 250 W | 6.0 | Toluene | 80 | 92 | |
13 | 365 nm, 250 W | 4.0 | DMSO | 80 | Trace | |
14 | 365 nm, 250 W | 4.0 | DMF | 80 | 33 | |
15 | 365 nm, 250 W | 4.0 | NMP | 80 | 65 | |
16 | 365 nm, 250 W | 4.0 | Dioxane | 80 | 61 | |
17 | 365 nm, 250 W | 4.0 | CH3OH | 80 | Trace | |
18 | 365 nm, 250 W | 4.0 | CH3CN | 80 | 27 | |
19 | 365 nm, 250 W | 4.0 | Toluene | 90 | 89 | |
20 | 365 nm, 250 W | 4.0 | Toluene | 70 | 86 | |
21e | 365 nm, 250 W | 4.0 | Toluene | 80 | 95 | |
22f | 365 nm, 250 W | 4.0 | Toluene | 80 | 87 |
[11] |
( 刘仁志, 杨民, 邱观音生, 张莲鹏, 王玉超, 罗劲, 有机化学, 2020, 40, 2071.)
pmid: 32157891 |
(m) Peng, S.; Lin, Y.; He, W. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
doi: 10.6023/cjoc202000006 pmid: 32157891 |
|
( 彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
pmid: 32157891 |
|
(n) Yuan, X.; Yang, G.; Yu, B. Chin. J. Org. Chem. 2020, 40, 3620. (in Chinese)
doi: 10.6023/cjoc202006068 pmid: 32157891 |
|
( 袁晓亚, 杨国平, 於兵, 有机化学, 2020, 40, 3620.)
pmid: 32157891 |
|
[1] |
(a) Fabre, B. Chem. Rev. 2016, 116, 4808.
doi: 10.1021/acs.chemrev.5b00595 pmid: 32203441 |
(b) Cavalli, A.; Bolognesi, M. L.; Capsoni, S.; Andrisano, V.; Bartolini, M.; Margotti, E.; Cattaneo, A.; Recanatini, M.; Melchiorre, C. Angew. Chem., Int. Ed. 2007, 46, 3689.
doi: 10.1002/anie.200700256 pmid: 32203441 |
|
(c) Nachtsheim, B. J. Nat. Chem. 2020, 12, 326
doi: 10.1038/s41557-020-0443-2 pmid: 32203441 |
|
(d) Liu, S.; Shen, T.; Luo, Z.; Liu, Z. Chem. Commun. 2019, 55, 402.
pmid: 32203441 |
|
[2] |
(a) Yu, J.; Zhang, H.; Lu, Q.; Ding, X.; Liu, S.; Li, Y. Chem. Ind. Eng. Prog. 2015, 34, 1115.
|
(b) Halhalli, M. R.; Sellergren, B. Polym. Chem. 2015, 6, 7320.
doi: 10.1039/C5PY01318F |
|
[3] |
Rajappa, S.; Sreenivasan, R.; Rane, A. V. Tetrahedron Lett. 1983, 24, 3155.
doi: 10.1016/S0040-4039(00)88121-6 |
[4] |
Nair, V.; Rajesh, C.; Dhanya, R.; Vinod, A. U. Tetrahedron Lett. 2001, 42, 2045.
doi: 10.1016/S0040-4039(01)00072-7 |
[5] |
Nair, V.; Dhanya, R.; Viji, S. Tetrahedron 2005, 61, 5843.
doi: 10.1016/j.tet.2005.04.008 |
[6] |
Parker, K. A.; Mindt, T. L. Org. Lett. 2016, 4, 4265.
doi: 10.1021/ol026849x |
[7] |
(a) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1021/acs.chemrev.6b00057 pmid: 22990664 |
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
doi: 10.1021/cr300503r pmid: 22990664 |
|
(c) Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
doi: 10.1039/c2cs35250h pmid: 22990664 |
|
(d) Tobisu, M.; Furukawa, T.; Chatani, N. Chem. Lett. 2013, 42, 1203.
doi: 10.1246/cl.130547 pmid: 22990664 |
|
(e) Gomes, F.; Narbonne, V.; Blanchard, F.; Maestri, G.; Malacria, M. Org. Chem. Front. 2015, 2, 464.
doi: 10.1039/C5QO00031A pmid: 22990664 |
|
(f) Wu, Y.; Pi, C.; Cui, X.; Wu, Y. Org. Lett. 2020, 22, 361.
doi: 10.1021/acs.orglett.9b03768 pmid: 22990664 |
|
(g) Ren, J.; Yan, X.; Cui, X.; Pi, C.; Wu, Y.; Cui, X. Green Chem. 2020, 22, 265.
doi: 10.1039/C9GC03567B pmid: 22990664 |
|
(h) Huang, Y.; Pi, C.; Tang, Z.; Wu, Y.; Cui, X. Chin. Chem. Lett. 2020, 31,3237.
doi: 10.1016/j.cclet.2020.08.046 pmid: 22990664 |
|
(i) Yao, Z.; Lin, X.; Chauvin, R.; Wang, L.; Gras, E.; Cui, X. Chin. Chem. Lett. 2020, 31, 3250.
doi: 10.1016/j.cclet.2020.04.008 pmid: 22990664 |
|
(j) Wang, Y.; Gao, X.; Ji, J.; Cui, X.; Pi, C.; Zhao, L.; Wu, Y. Chin. Chem. Lett. 2021, 32, 1696.
doi: 10.1016/j.cclet.2020.12.026 pmid: 22990664 |
|
(k) Li, H.; Han, Y.; Yang, Z.; Yao, Z.; Wang, L.; Cui, X. Chin. Chem. Lett. 2021, 32, 1709.
doi: 10.1016/j.cclet.2020.12.027 pmid: 22990664 |
|
(l) Ren, J.; Huang, Y.; Pi, C.; Cui, X.; Wu, Y. Chin. Chem. Lett. 2021, 32, 2592.
doi: 10.1016/j.cclet.2021.02.061 pmid: 22990664 |
|
(m) Chen, Z.; Zhang, H.; Zhou, S.; Cui, X. Chin. J. Org. Chem. 2020, 40, 3866. (in Chinese)
doi: 10.6023/cjoc202007005 pmid: 22990664 |
|
( 陈志超, 张红, 周树峰, 崔秀灵, 有机化学, 2020, 40, 3866.)
pmid: 22990664 |
|
(n) Xiao, Y.; Yang, Y.; Zhang, F.; Feng, Y.; Cui, X. Chin. J. Org. Chem. 2021, 41, 4808. (in Chinese)
doi: 10.6023/cjoc202107021 pmid: 22990664 |
|
( 肖玉娟, 杨阳, 张凡, 冯亚栋, 崔秀灵, 有机化学, 2021, 41, 4808.)
pmid: 22990664 |
|
(o) Wu, Y.; Chen, J.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W. Green Chem. 2021, 23, 3950.
doi: 10.1039/D1GC00562F pmid: 22990664 |
|
(p) Yi, R.; He, W. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
doi: 10.6023/cjoc202100022 pmid: 22990664 |
|
易荣楠, 何卫民, 有机化学, 2021, 41, 1267).
pmid: 22990664 |
|
[8] |
Kwon, K.; Simons, R. T.; Nandakumar, M.; Roizen, J. L. Chem. Rev. 2022, 122, 2353.
doi: 10.1021/acs.chemrev.1c00444 |
[9] |
Vitale, A.; Bongiovanni, R.; Ameduri, B. Chem. Rev. 2015, 115, 8835.
doi: 10.1021/acs.chemrev.5b00120 |
[10] |
Feng, Y.; Liu, Y.; Fu, Q.; Zou, Z.; Shen, J.; Cui, X. Chin. Chem. Lett. 2020, 31, 733.
doi: 10.1016/j.cclet.2019.09.026 |
[11] |
(a) Liang, D.; Tan, L.; Xiao, W.; Chen, J. Chem. Commun. 2020, 56, 3777.
doi: 10.1039/D0CC00747A pmid: 32157891 |
(b) Xie, L.; Fang, T.; Tan, J.; Zhang, B.; Cao, Z.; Yang, L.; He, W. Green Chem. 2019, 21, 3858.
doi: 10.1039/C9GC01175G pmid: 32157891 |
|
(c) Zhu, S.; Zhou, J.; Wu, Q.; Hao, W.; Tu, S.; Jiang, B. Org. Chem. Front. 2020, 7, 2975.
doi: 10.1039/D0QO00917B pmid: 32157891 |
|
(d) Feng, Y.; Wu, Z.; Chen, T.; Fu, Q.; You, Q, Shen, J.; Cui, X. Chin. Chem. Lett. 2020, 31, 3263.
doi: 10.1016/j.cclet.2020.03.080 pmid: 32157891 |
|
(e) Yu, X.; Chen, J.; Chen, H.; Xiao, W.; Chen, J. Org. Lett. 2020, 22. 2333.
doi: 10.1021/acs.orglett.0c00532 pmid: 32157891 |
|
(f) Zhao, Q.; Zhou, X.; Xu, S.; Wu, Y.; Xiao, W.; Chen, J. Org. Lett. 2020, 22, 2470.
doi: 10.1021/acs.orglett.0c00712 pmid: 32157891 |
|
(g) Shen, Z.; Pi, C.; Cui, X.; Wu, Y. Chin. Chem. Lett. 2019, 30, 1374.
doi: 10.1016/j.cclet.2019.01.033 pmid: 32157891 |
|
(h) Gao, Q.; Hao, W.; Liu, F.; Tu, S.; Wang, S.; Li, G.; Jiang, B. Chem. Commun. 2016, 52, 900.
doi: 10.1039/C5CC08071A pmid: 32157891 |
|
(i) Zhou, P.; Wang, J.; Zhang, T. Chem. Commun. 2018, 54, 164.
doi: 10.1039/C7CC08792F pmid: 32157891 |
|
(j) Yu, H.; Pi, C.; Wang, Y.; Cui, X.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 124. (in Chinese)
doi: 10.6023/cjoc201709054 pmid: 32157891 |
|
( 余海洋, 皮超, 王勇, 崔秀灵, 吴养洁, 有机化学, 2018, 38, 124.)
pmid: 32157891 |
|
(k) Shi, Z.-J.; Wang, L.-H.; Cui, X. Chin. J. Org. Chem. 2019, 39, 1596. (in Chinese)
doi: 10.6023/cjoc201902001 pmid: 32157891 |
|
( 施兆江, 王连会, 崔秀灵, 有机化学, 2019, 39, 1596.)
pmid: 32157891 |
|
(l) Liu, R.; Yang, M.; Qiu, G.; Zhang, L.; Wang, Y.; Luo, J. Chin. J. Org. Chem. 2020, 40, 2071. (in Chinese)
doi: 10.6023/cjoc202003016 pmid: 32157891 |
[1] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[2] | Jie Liu, Feng Han, Shuangyan Li, Tianyu Chen, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic Olefination of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 573-583. |
[3] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
[4] | Jianghu Dong, Liangming Xuan, Chi Wang, Chenxi Zhao, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fen'er Chen. Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 111-136. |
[5] | Yijun Shi, Xinyue Sun, Han Cao, Fusheng Bie, Jie Ma, Zhe Liu, Xingshun Cong. Thioesterification of Esters with Primary Aliphatic Thiols at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2499-2505. |
[6] | Zhongrong Xu, Jieping Wan, Yunyun Liu. Transition Metal-Free C—H Thiocyanation and Selenocyanation Based on Thermochemical, Photocatalytic and Electrochemical Process [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2425-2446. |
[7] | Jiao Qin, Jie Chen, Yan Su. Synthesis of 2,2,6,6-Tetramethylpiperidin-1-yl-2-(2-cyanophenyl)-acetate by Transition Metal-Free Radical Cleavage Reaction from α-Bromoindanone [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2171-2177. |
[8] | Rui Wang, Lang Gao, Cen Zhou, Xiao Zhang. Haloperfluoroalkylation of Unactivated Terminal Alkenes over Phenylphenothiazine-Based Porous Organic Polymers [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1136-1145. |
[9] | Biao Ma, Miaomiao Zhang, Zhanyu Li, Jinsong Peng, Chunxia Chen. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 455-470. |
[10] | Jing Sun, Mengmeng Zhang, Xiaolong Guo, Qi Wang, Luyao Wang. Synthesis of Diaryl Selenium Compounds without Transition-Metal Catalyst [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4251-4260. |
[11] | Duoduo Xiao, Jiantao Zhang, Peng Zhou, Weibing Liu. Metal-Free α-C(sp3)—H Methylenation of Aryl Ketones to Form γ-Keto Sulfoxides with Dimethyl Sulfoxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3900-3906. |
[12] | Qiyang Li, Haiyan Zhang, Wenbo Liu. Research Progress in Transition-Metal-Free C—Si Bond Formation [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3470-3490. |
[13] | Panpan Lei, Qinlin Chen, Hang Chen, Yang Zhou, Linhai Jin, Wei Wang, Fener Chen. Synthesis of Bibenzyl Derivatives via Visible-Light-Promoted 1,5-Hydrogen Atom Transfer/Radical Coupling Reactions of N-Fluorocarboxamides [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 254-264. |
[14] | Tianyu Chen, Feng Han, Shuangyan Li, Jianping Liu, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic C-Alkylation of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2914-2924. |
[15] | Fangshao Li, Jing Xiao, Xiaofang Wu, Xiaoyi Wang, Jinfeng Deng, Zilong Tang. Metal-Free Formation of 2-Substitued Benzoxazoles with Amides and Esters [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1778-1785. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||