Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (8): 2462-2470.DOI: 10.6023/cjoc202204014 Previous Articles Next Articles
ARTICLES
刘瑞生a, 付双敏a, 楚秀民a, 张灵莉a, 丁柔a, 赵先恩a, 岳会兰b,*(), 魏伟a,b,*()
收稿日期:
2022-04-06
修回日期:
2022-05-02
发布日期:
2022-05-17
通讯作者:
岳会兰, 魏伟
作者简介:
基金资助:
Ruisheng Liua, Shuangmin Fua, Xiumin Chua, Lingli Zhanga, Rou Dinga, Xian'en Zhaoa, Huilan Yueb(), Wei Weia,b()
Received:
2022-04-06
Revised:
2022-05-02
Published:
2022-05-17
Contact:
Huilan Yue, Wei Wei
About author:
Supported by:
Share
Ruisheng Liu, Shuangmin Fu, Xiumin Chu, Lingli Zhang, Rou Ding, Xian'en Zhao, Huilan Yue, Wei Wei. Visible-Light-Induced Denitrification Oxygenation Reaction of α-Diazoesters to Construct α-Oxyimido Esters[J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2462-2470.
Entry | Photocatalyst | Solvent | Yieldb/% | ||
---|---|---|---|---|---|
3a | 4a | ||||
1 | Eosin Y | CH2Cl2 | 72 | 0 | |
2 | Rose Bengal | CH2Cl2 | 39 | 0 | |
3 | 4CzIPN | CH2Cl2 | 70 | 0 | |
4 | — | CH2Cl2 | 74 | 0 | |
5 | — | DMF | 0 | 0 | |
6 | — | DMSO | 0 | 0 | |
7 | — | CH3CN | 48 | 0 | |
8 | — | DCE | 33 | 0 | |
9 | — | CHCl3 | 26 | 0 | |
10 | — | Acetone | 43 | 0 | |
11 | — | AcOEt | 38 | 0 | |
12 | — | 1,4-Dioxane | 76 | 0 | |
13 | — | THF | 0 | 98 | |
14 | — | 1,4-Dioxane | 15c | 0 | |
15 | — | 1,4-Dioxane | 10d | 0 | |
16 | — | 1,4-Dioxane | 18e | 0 | |
17 | — | 1,4-Dioxane | 0f | 0 | |
18 | — | THF | 0 | 0f |
Entry | Photocatalyst | Solvent | Yieldb/% | ||
---|---|---|---|---|---|
3a | 4a | ||||
1 | Eosin Y | CH2Cl2 | 72 | 0 | |
2 | Rose Bengal | CH2Cl2 | 39 | 0 | |
3 | 4CzIPN | CH2Cl2 | 70 | 0 | |
4 | — | CH2Cl2 | 74 | 0 | |
5 | — | DMF | 0 | 0 | |
6 | — | DMSO | 0 | 0 | |
7 | — | CH3CN | 48 | 0 | |
8 | — | DCE | 33 | 0 | |
9 | — | CHCl3 | 26 | 0 | |
10 | — | Acetone | 43 | 0 | |
11 | — | AcOEt | 38 | 0 | |
12 | — | 1,4-Dioxane | 76 | 0 | |
13 | — | THF | 0 | 98 | |
14 | — | 1,4-Dioxane | 15c | 0 | |
15 | — | 1,4-Dioxane | 10d | 0 | |
16 | — | 1,4-Dioxane | 18e | 0 | |
17 | — | 1,4-Dioxane | 0f | 0 | |
18 | — | THF | 0 | 0f |
[1] |
Diedrich, D.; Moita, A. J. R.; Rether, A.; Frieg, B.; Reiss, G. J.; Hoeppner, A.; Kurz, T.; Gohlke, H.; Ledeke, S.; Kassack, M. U.; Hansen, F. K. Chem.-Eur. J. 2016, 22, 17600.
doi: 10.1002/chem.201602521 pmid: 27573537 |
[2] |
Takekida, Y.; Okazaki, M.; Shuto, Y. Biosci. Biotechnol. Biochem. 1999, 63, 1831.
doi: 10.1271/bbb.63.1831 |
[3] |
Brown, M. F.; Mitton-Fry, M. J.; Arcari, J.; Barham, T.; Casavant, J. B.; Gerstenberger, S. S.; Han, J. J. Med. Chem. 2013, 56, 5541.
doi: 10.1021/jm400560z |
[4] |
Yamawaki, K.; Nomura, T.; Yasukata, T.; Uotani, K.; Miwa, H.; Takeda, K.; Nishitani, Y. Bioorg. Med. Chem. 2007, 15, 6716.
doi: 10.1016/j.bmc.2007.08.001 |
[5] |
Hara, R.; Nakai, E.-I.; Hisamichi, H.; Nagano, N. J. Antibiot. 1994, 47, 477.
pmid: 8195048 |
[6] |
Bompart, J.; Giral, L.; Malicorne, G.; Puygrenier, M. Eur. J. Med. Chem. 1988, 23, 457.
doi: 10.1016/0223-5234(88)90143-2 |
[7] |
Szabo, G.; Fischer, J.; Kis-Varga, A.; Gyires, K. J. Med. Chem. 2008, 51, 142.
doi: 10.1021/jm070821f |
[8] |
Edafiogho, I. O.; Scott, K. R.; Moore, J. A.; Farrar, V. A.; Nicholson, J. M. J. Med. Chem. 1991, 34, 387.
pmid: 1992141 |
[9] |
Dian, L.; Wang, S.; Zhang-Negrerie, D.; Du, Y. Adv. Synth. Catal. 2015, 357, 3836.
doi: 10.1002/adsc.201500623 |
[10] |
Krylov, I. B.; Lopat’eva, E. R.; Budnikov, A. S.; Nikishin, G. I.; Terent’ev, A. O. J. Org. Chem. 2020, 85, 1935.
doi: 10.1021/acs.joc.9b02656 pmid: 31886660 |
[11] |
Xu, L.; Yi, Y.; Hu, S.; Ye, J.; Hu, A. Electrochim. Acta 2022, 403, 139533.
doi: 10.1016/j.electacta.2021.139533 |
[12] |
Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506.
doi: 10.1039/c5cs00821b pmid: 26658761 |
[13] |
Ciszewski, L. W.; Rybicka-jasinska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
doi: 10.1039/c8ob02703j pmid: 30543264 |
[14] |
Li, Q.; Li, M.; Shi, S.; Ji, S.; He, C.; Jiang, B.; Hao, W. Chin. J. Org. Chem. 2020, 40, 384. (in Chinese)
doi: 10.6023/cjoc201909041 |
(李庆雪, 李梦伟, 时绍青, 季晓霜, 何春兰, 姜波, 郝文娟, 有机化学, 2020, 40, 384.)
doi: 10.6023/cjoc201909041 |
|
[15] |
(a) Yang, Z.; Stivanin, M. L.; Jurberg, I. D.; Koenigs, R. M. Chem. Soc. Rev. 2020, 49, 6833.
doi: 10.1039/D0CS00224K |
(b) Sambasivanand, R.; Ball, Z. T. Angew. Chem., Int. Ed. 2012, 51, 8568.
doi: 10.1002/anie.201202512 |
|
(c) Adly, F. G.; Gardiner, M. G.; Ghanem, A. Chem.-Eur. J. 2016, 22, 3447.
doi: 10.1002/chem.201504817 |
|
(d) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 19198.
doi: 10.1021/ja2074104 |
|
(e) Xu, H.; Li, Y.-P.; Cai, Y.; Wang, G.-P.; Zhu, S. F.; Zhou, Q.-L. J. Am. Chem. Soc. 2017, 139, 7697.
doi: 10.1021/jacs.7b03086 |
|
[16] |
(a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223.
doi: 10.1021/cr950022h pmid: 15876058 |
(b) Yakura, T.; Ozono, A.; Matsui, K.; Yamashita, M.; Fujiwara, T. Synlett 2013, 24, 65.
doi: 10.1055/s-0032-1317694 pmid: 15876058 |
|
(c) Roberts, E.; Sançon, J. P.; Sweeney, J. B. Org. Lett. 2005, 7, 2075.
pmid: 15876058 |
|
[17] |
(a) Clapham, B.; Spanka, C.; Janda, K. D. Org. Lett. 2001, 3, 2173.
pmid: 11440572 |
(b) Tan, F.; Liu, X.; Hao, X.; Tang, Y.; Lin, L.; Feng, X. ACS Catal. 2016, 6, 6930.
doi: 10.1021/acscatal.6b02184 pmid: 11440572 |
|
(c) Zhang, Y.; Yao, Y.; He, L.; Liu, Y.; Shi, L. Adv. Synth. Catal. 2017, 359, 2754.
doi: 10.1002/adsc.201700572 pmid: 11440572 |
|
[18] |
(a) Neupane, P.; Li, X.; Jung, J. H.; Lee, Y. R.; Kim, S. H. Tetrahedron 2012, 68, 2496.
doi: 10.1016/j.tet.2012.01.060 |
(b) Dyer, J.; Jockusch, S.; Balsanek, V.; Sames, D.; Turro, N. J. Org. Chem. 2005, 70, 2143.
doi: 10.1021/jo048053c |
|
(c) Dussault, P. H.; Xu, C. Tetrahedron Lett. 2004, 45, 7455.
doi: 10.1016/j.tetlet.2004.08.059 |
|
[19] |
(a) Wang, N.-N.; Huang, L.-R.; Hao, W.-J.; Zhang, T.-S.; Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2016, 18, 1298.
doi: 10.1021/acs.orglett.6b00238 |
(b) Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Green Chem. 2020, 22, 4890.
doi: 10.1039/D0GC00910E |
|
(c) Qian, L.; Cai, B.-G.; Li, L.; Xuan, J. Org. Lett. 2021, 23, 6951.
doi: 10.1021/acs.orglett.1c02555 |
|
(d) Cai, B.-G.; Li, Q.; Zhang, Q.; Li, L.; Xuan, J. Org. Chem. Front. 2021, 8, 598.
|
|
(e) Zhang, T.-S.; Zhang, H.; Fu, R.; Wang, J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2019, 55, 13231.
doi: 10.1039/C9CC07236E |
|
[20] |
Liu, R.; Liu, Q.; Meng, H.; Ding, H.; Hao, J.; Ji, Z.; Yue, H.; Wei, W. Org. Chem. Front. 2021, 8, 1970.
doi: 10.1039/D0QO01587C |
[21] |
Yang, J.; Duan, J.; Wang, G.; Zhou, H.; Ma, B.; Wu, C.; Xiao, J. Org. Lett. 2020, 22, 7284.
doi: 10.1021/acs.orglett.0c02619 |
[1] | Hong'en Tong, Hongyu Guo, Rong Zhou. Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 54-69. |
[2] | Min Wu, Bo Liu, Jialong Yuan, Qiang Fu, Rui Wang, Dawei Lou, Fushun Liang. Recent Progress in the C—S Bond Formation Reactions Mediated by Visible Light [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2269-2292. |
[3] | Changyuan Du, Yucai Tang, Jinglin Duan, Biyu Yang, Yupeng He, Qian Zhou, Xuewen Liu. Organic-Dye-Catalyzed Visible-Light-Mediated Alkoxycarbon-ylation of 2-Aryl-N-acryloyl Indoles with Carbazates [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4268-4276. |
[4] | Juan Tang, Jiayu Hu, Zhiqiang Zhu, Shouzhi Pu. Recent Advances in Visible-Light-Induced Organic Phosphine- Promoted Deoxygenative Functionalization Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4036-4056. |
[5] | Panpan Lei, Qinlin Chen, Hang Chen, Yang Zhou, Linhai Jin, Wei Wang, Fener Chen. Synthesis of Bibenzyl Derivatives via Visible-Light-Promoted 1,5-Hydrogen Atom Transfer/Radical Coupling Reactions of N-Fluorocarboxamides [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 254-264. |
[6] | Haoyang Liu, Shuangshuang Sun, Xianli Ma, Yanyan Chen, Yanli Xu. Synthesis of Selenylated Spiro[indole-3,3'-quinoline] Derivatives via Visible-Light-Promoted Isocyanide Insertion [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2867-2876. |
[7] | Zhentao Pan, Tong Liu, Yongmin Ma, Jianbo Yan, Ya-Jun Wang. Construction of Quinazolin(thi)ones by Brønsted Acid/Visible-Light Photoredox Relay Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2823-2831. |
[8] | Runye Gao, Lingling Zuo, Fang Wang, Chuanying Li, Huajiang Jiang, Pinhua Li, Lei Wang. Recent Advances in Controllable Organic Reactions Induced by Visible Light without External Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 1883-1903. |
[9] | Jiayu Hu, Zhiqiang Zhu, Zongbo Xie, Zhanggao Le. Recent Advances in Visible-Light-Induced Decarboxylative Coupling Reactions of α-Amino Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 978-1001. |
[10] | Qian Xiao, Qing-Xiao Tong, Jian-Ji Zhong. Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3979-3994. |
[11] | Meng Li, Dongyang Zhao, Kai Sun. Visible Light Driving Alkene Difunctionalization Reaction Involving Group Migration [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4152-4168. |
[12] | Mengqi Zhang, Guangming Nan, Xiaohui Zhao, Wei Wei. Visible-Light-Mediated C3-H Acetalation of Quinoxalin-2(1H)-ones [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4315-4322. |
[13] | Xihui Yang, Haowei Gao, Jiale Yan, Lei Shi. Recent Progress in Radical-Mediated Si—H Functionalization of Silanes: An Effective Strategy for the Synthesis of Organosilanes Containing C—Si Bond [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4122-4151. |
[14] | Xiang Liu, Wen Li, Canzhan Zhuang, Hua Cao. Application of Photochemical/Electrochemical Synthesis in C—H Functionalization of Quinoxalin-2(1H)-one [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3459-3481. |
[15] | Xinchang Li, Huiru Yang, Zheyao Hu, Xin Jin, Wenyi Zhang, Xunxiang Guo. Synthesis of 4(3H)-Quinazolinones by Visible-Light-Induced 2-Benzylaminobenzamides [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3083-3088. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||