Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (12): 4122-4151.DOI: 10.6023/cjoc202207047 Previous Articles Next Articles
Special Issue: 自由基化学专辑
REVIEWS
收稿日期:
2022-07-31
修回日期:
2022-08-28
发布日期:
2022-09-23
通讯作者:
史雷
作者简介:
基金资助:
Xihui Yanga, Haowei Gaoa, Jiale Yana, Lei Shia,b()
Received:
2022-07-31
Revised:
2022-08-28
Published:
2022-09-23
Contact:
Lei Shi
About author:
Supported by:
Share
Xihui Yang, Haowei Gao, Jiale Yan, Lei Shi. Recent Progress in Radical-Mediated Si—H Functionalization of Silanes: An Effective Strategy for the Synthesis of Organosilanes Containing C—Si Bond[J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4122-4151.
[1] |
Du, X.; Huang, Z. ACS Catal. 2017, 7, 1227.
doi: 10.1021/acscatal.6b02990 |
[2] |
Ramesh, R.; Reddy, D. S. J. Med. Chem. 2018, 61, 3779.
doi: 10.1021/acs.jmedchem.7b00718 pmid: 29039662 |
[3] |
(a) Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000.
|
(b) Bähr, S.; Xue, W.; Oestreich, M. ACS Catal. 2018, 9, 16-24.
doi: 10.1021/acscatal.8b04230 |
|
[4] |
Parsaee, F.; Senarathna, M. C.; Kannangara, P. B.; Alexander, S. N.; Arche, P. D. E.; Welin, E. R. Nat. Rev. Chem. 2021, 5, 486.
doi: 10.1038/s41570-021-00284-3 |
[5] |
Lu, L.; Siu, J. C.; Lai, Y.; Lin, S. J. Am. Chem. Soc. 2020, 142, 21272.
doi: 10.1021/jacs.0c10899 |
[6] |
(a) Vulovic, B.; Cinderella, A. P.; Watson, D. A. ACS Catal. 2017, 7, 8113.
doi: 10.1021/acscatal.7b03465 pmid: 29868244 |
(b) Lalonde, M.; Chan, T. H. Synthesis 1985, 817.
pmid: 29868244 |
|
[7] |
(a) Shang, X.; Liu, Z.-Q. Org. Biomol. Chem. 2016, 14, 7829.
doi: 10.1039/C6OB00797J pmid: 29938502 |
(b) Zhang, X. P.; Fang, J. K.; Cai, C.; Lu, G. P. Chin. Chem. Lett. 2021, 32, 1280.
doi: 10.1016/j.cclet.2020.09.058 pmid: 29938502 |
|
(c) Li, J.-S.; Wu, J. ChemPhotoChem 2018, 2, 839.
doi: 10.1002/cptc.201800110 pmid: 29938502 |
|
(d) Chatgilialoglu, C.; Ferreri, C.; Landais, Y.; Timokhin, V. I. Chem. Rev. 2018, 118, 6516.
doi: 10.1021/acs.chemrev.8b00109 pmid: 29938502 |
|
[8] |
Zhang, L.; Hang, Z.; Liu, Z. Q. Angew. Chem., Int. Ed. 2016, 55, 236.
doi: 10.1002/anie.201509537 |
[9] |
Gu, J.; Cai, C. Chem. Commun. 2016, 52, 10779.
doi: 10.1039/C6CC05509E |
[10] |
Xu, R.; Cai, C. Catal. Commun. 2018, 107, 5.
doi: 10.1016/j.catcom.2017.12.023 |
[11] |
Lin, Y. M.; Lu, G. P.; Wang, R. K.; Yi, W. B. Org. Lett. 2017, 19, 1100.
doi: 10.1021/acs.orglett.7b00126 |
[12] |
Zhang, X.; Liu, M.-X.; Wang, T.-L.; Wang, Y.-Q.; Wang, X.-C.; Quan, Z.-J. Org. Chem. Front. 2019, 6, 3365.
doi: 10.1039/c9qo00819e |
[13] |
Chang, X. H.; Wang, Z. L.; Zhao, M.; Yang, C.; Li, J. J.; Ma, W. W.; Xu, Y. H. Org. Lett. 2020, 22, 1326.
doi: 10.1021/acs.orglett.9b04645 |
[14] |
Gan, Q. C.; Song, Z. Q.; Tung, C. H.; Wu, L. Z. Org. Lett. 2022, 24, 5192.
doi: 10.1021/acs.orglett.2c02022 |
[15] |
Zhang, L.; Liu, D.; Liu, Z. Q. Org. Lett. 2015, 17, 2534.
doi: 10.1021/acs.orglett.5b01067 |
[16] |
Yan, Z.; Xie, J.; Zhu, C. Adv. Synth. Catal. 2017, 359, 4153.
doi: 10.1002/adsc.201700926 |
[17] |
Peng, H.; Yu, J. T.; Jiang, Y.; Cheng, J. Org. Biomol. Chem. 2015, 13, 10299.
doi: 10.1039/C5OB01855B |
[18] |
Gao, P.; Zhang, W.; Zhang, Z. Org. Lett. 2016, 18, 5820.
doi: 10.1021/acs.orglett.6b02781 |
[19] |
Wu, L.-J.; Tan, F.-L.; Li, M.; Song, R.-J.; Li, J.-H. Org. Chem. Front. 2017, 4, 350.
doi: 10.1039/C6QO00691D |
[20] |
Zhang, H.; Wu, X.; Zhao, Q.; Zhu, C. Chem. Asian J. 2018, 13, 2453.
doi: 10.1002/asia.201800150 |
[21] |
Yang, Y.; Song, R. J.; Ouyang, X. H.; Wang, C. Y.; Li, J. H.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 7916.
doi: 10.1002/anie.201702349 |
[22] |
Lan, Y.; Chang, X.-H.; Fan, P.; Shan, C.-C.; Liu, Z.-B.; Loh, T.-P.; Xu, Y.-H. ACS Catal. 2017, 7, 7120.
doi: 10.1021/acscatal.7b02754 |
[23] |
Zhang, C.; Pi, J.; Wang, L.; Liu, P.; Sun, P. Org. Biomol. Chem., 2018, 16, 9223.
doi: 10.1039/c8ob02670j pmid: 30475364 |
[24] |
Nozawa-Kumada, K.; Ojima, T.; Inagi, M.; Shigeno, M.; Kondo, Y. Org. Lett. 2020, 22, 9591.
doi: 10.1021/acs.orglett.0c03640 pmid: 33269934 |
[25] |
Chen, F.; Zheng, Y.; Yang, H.; Yang, Q. Y.; Wu, L. Y.; Zhou, N. Adv. Synth. Catal. 2022, 364, 1537.
doi: 10.1002/adsc.202200049 |
[26] |
Xue, Y.; Guo, Z.; Chen, X.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Org. Biomol. Chem. 2022, 20, 989.
doi: 10.1039/D1OB02318G |
[27] |
Leifert, D.; Studer, A. Org. Lett. 2015, 17, 386.
doi: 10.1021/ol503574k pmid: 25536028 |
[28] |
Xu, Z.; Chai, L.; Liu, Z. Q. Org. Lett. 2017, 19, 5573.
doi: 10.1021/acs.orglett.7b02717 |
[29] |
Li, Y.; Shu, K.; Liu, P.; Sun, P. Org. Lett. 2020, 22, 6304.
doi: 10.1021/acs.orglett.0c02131 |
[30] |
Wang, L.; Zhu, H.; Guo, S.; Cheng, J.; Yu, J. T. Chem. Commun. 2014, 50, 10864.
doi: 10.1039/C4CC04773G |
[31] |
Yang, Y.; Song, R. J.; Li, Y.; Ouyang, X. H.; Li, J. H.; He, D. L. Chem. Commun. 2018, 54, 1441.
doi: 10.1039/C7CC08964C |
[32] |
Qrareya, H.; Dondi, D.; Ravelli, D.; Fagnoni, M. ChemCatChem 2015, 7, 3350.
doi: 10.1002/cctc.201500562 |
[33] |
Zhou, R.; Goh, Y. Y.; Liu, H.; Tao, H.; Li, L.; Wu, J. Angew. Chem., Int. Ed. 2017, 56, 16621.
doi: 10.1002/anie.201711250 |
[34] |
Zhu, J.; Cui, W.-C.; Wang, S.; Yao, Z.-J. J. Org. Chem. 2018, 83, 14600.
doi: 10.1021/acs.joc.8b02409 |
[35] |
Zhu, J.; Cui, W. C.; Wang, S.; Yao, Z. J. Org. Lett. 2018, 20, 3174.
doi: 10.1021/acs.orglett.8b00909 |
[36] |
Cai, Y.; Zhao, W.; Wang, S.; Liang, Y.; Yao, Z. J. Org. Lett. 2019, 21, 9836.
doi: 10.1021/acs.orglett.9b03679 |
[37] |
Liang, H.; Ji, Y. X.; Wang, R. H.; Zhang, Z. H.; Zhang, B. Org. Lett. 2019, 21, 2750.
doi: 10.1021/acs.orglett.9b00701 pmid: 30931573 |
[38] |
Hou, J.; Ee, A.; Cao, H.; Ong, H. W.; Xu, J. H.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 17220.
doi: 10.1002/anie.201811266 |
[39] |
Zhang, Z.; Hu, X. ACS Catal. 2019, 10, 777.
doi: 10.1021/acscatal.9b04916 |
[40] |
Cui, W. C.; Zhao, W.; Gao, M.; Liu, W.; Wang, S.; Liang, Y.; Yao, Z. J. Chem.-Eur. J. 2019, 25, 16506.
doi: 10.1002/chem.201903440 |
[41] |
Hou, H.; Xu, Y.; Yang, H.; Chen, X.; Yan, C.; Shi, Y.; Zhu, S. Org. Lett. 2020, 22, 1748.
doi: 10.1021/acs.orglett.0c00024 |
[42] |
Neogi, S.; Kumar Ghosh, A.; Mandal, S.; Ghosh, D.; Ghosh, S.; Hajra, A. Org. Lett. 2021, 23, 6510.
doi: 10.1021/acs.orglett.1c02322 |
[43] |
Ke, J.; Liu, W.; Zhu, X.; Tan, X.; He, C. Angew. Chem., Int. Ed. 2021, 60, 8744.
doi: 10.1002/anie.202016620 |
[44] |
Yang, C.; Wang, J.; Li, J.; Ma, W.; An, K.; He, W.; Jiang, C. Adv. Synth. Catal. 2018, 360, 3049.
doi: 10.1002/adsc.201800417 |
[45] |
Liu, S.; Pan, P.; Fan, H.; Li, H.; Wang, W.; Zhang, Y. Chem. Sci. 2019, 10, 3817.
doi: 10.1039/C9SC00046A |
[46] |
Rammal, F.; Gao, D.; Boujnah, S.; Hussein, A. A.; Lalevée, J.; Gaumont, A.-C.; Morlet-Savary, F.; Lakhdar, S. ACS Catal. 2020, 10, 13710.
doi: 10.1021/acscatal.0c03726 |
[47] |
Dai, C.; Zhan, Y.; Liu, P.; Sun, P. Green Chem. 2021, 23, 314.
doi: 10.1039/D0GC03697H |
[48] |
Zhang, W.; Lu, Q.; Wang, M.; Zhang, Y.; Xia, X. F.; Wang, D. Org. Lett. 2022, 24, 3797.
doi: 10.1021/acs.orglett.2c01330 |
[49] |
Yu, W. L.; Luo, Y. C.; Yan, L.; Liu, D.; Wang, Z. Y.; Xu, P. F. Angew. Chem., Int. Ed. 2019, 58, 10941
doi: 10.1002/anie.201904707 |
[50] |
Inoue, M.; Sumii, Y.; Shibata, N. ACS Omega 2020, 5, 10633.
doi: 10.1021/acsomega.0c00830 |
[51] |
Yue, F.; Liu, J.; Ma, H.; Liu, Y.; Dong, J.; Wang, Q. Org. Lett. 2022, 24, 4019.
doi: 10.1021/acs.orglett.2c01448 |
[52] |
Luo, C.; Zhou, Y.; Chen, H.; Wang, T.; Zhang, Z. B.; Han, P.; Jing, L. H. Org. Lett. 2022, 24, 4286.
doi: 10.1021/acs.orglett.2c01690 |
[53] |
Luo, C.; Lu, W. H.; Wang, G. Q.; Zhang, Z. B.; Li, H. Q.; Han, P.; Yang, D.; Jing, L. H.; Wang, C. J. Org. Chem. 2022, 87, 3567.
doi: 10.1021/acs.joc.1c03125 |
[54] |
Romain, E.; Fopp, C.; Chemla, F.; Ferreira, F.; Jackowski, O.; Oestreich, M.; Perez-Luna, A. Angew. Chem., Int. Ed. 2014, 53, 11333.
doi: 10.1002/anie.201407002 |
[55] |
Toutov, A. A.; Liu, W. B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80.
doi: 10.1038/nature14126 |
[56] |
Liu, W. B.; Schuman, D. P.; Yang, Y. F.; Toutov, A. A.; Liang, Y.; Klare, H. F. T.; Nesnas, N.; Oestreich, M.; Blackmond, D. G.; Virgil, S. C.; Banerjee, S.; Zare, R. N.; Grubbs, R. H.; Houk, K. N.; Stoltz, B. M. J. Am. Chem. Soc. 2017, 139, 6867.
doi: 10.1021/jacs.6b13031 |
[57] |
Dong, J.; Yuan, X. A.; Yan, Z.; Mu, L.; Ma, J.; Zhu, C.; Xie, J. Nat. Chem. 2021, 13, 182.
doi: 10.1038/s41557-020-00589-8 pmid: 33318674 |
[58] |
Walsh, R. Acc. Chem. Res. 1981, 14, 246.
doi: 10.1021/ar00068a004 |
[1] | Hong'en Tong, Hongyu Guo, Rong Zhou. Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 54-69. |
[2] | Fengjuan Chen, Luo Liu, Zilu Zhang, Wei Zeng. Recent Progress in Synthesis of Organosilanes Driven by Visible-Light [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3454-3469. |
[3] | Zhentao Pan, Tong Liu, Yongmin Ma, Jianbo Yan, Ya-Jun Wang. Construction of Quinazolin(thi)ones by Brønsted Acid/Visible-Light Photoredox Relay Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2823-2831. |
[4] | Xiang Liu, Wen Li, Huanyu Liu, Hua Cao. Application on the Construction of Imidazo[1,2-a]pyridines C-3 Canbon-Hetero Bonds by Visible-Light Catalysis and Electrochemistry [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1759-1773. |
[5] | Jinwei Yuan, Yan Liu, Yuanyuan Ge, Shaoxuan Dong, Saiyi Song, Liangru Yang, Yongmei Xiao, Shouren Zhang, Lingbo Qu. Visible-Light-Induced Regioselective ortho-C—H Phosphonylation of β-Naphthols with Diarylphosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4738-4748. |
[6] | JIN Hong-Xia,WU Yi-Kang*. Methods for Constructing the Peroxy Bonds of Organic Peroxides [J]. Chin. J. Org. Chem., 2005, 25(11): 1372-1380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||