Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (11): 3761-3783.DOI: 10.6023/cjoc202303042 Previous Articles Next Articles
收稿日期:
2023-03-29
修回日期:
2023-05-31
发布日期:
2023-06-26
Received:
2023-03-29
Revised:
2023-05-31
Published:
2023-06-26
Contact:
E-mail: Share
Sining Qin. Research Progress in C—S Coupling Reactions of Aryl Halides[J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3761-3783.
[1] |
Shin, H. W.; Jin, X. H.; Gim, M. J.; Kim, I. H.; Kim, Y. Y. Anim. Biosci. 2023, 36, 776.
doi: 10.5713/ab.22.0418 |
[2] |
Liu, Z.; Li, M.; Wang, S.; Huang, H.; Zhang, W. Mar. Drugs 2022, 20, 765.
doi: 10.3390/md20120765 |
[3] |
Shoaib, S.; Ansari, M. A.; Ghazwani, M.; Hani, U.; Jamous, Y. F.; Alali, Z.; Wahab, S.; Ahmad, W.; Weir, S.A.; Alomary, M.N.; Yusuf, N.; Islam, N. Cancers (Basel) 2023, 15, 697.
doi: 10.3390/cancers15030697 |
[4] |
Domán, A.; Dóka, É.; Garai, D.; Bogdándi, V.; Balla, G.; Balla, J.; Nagy, P. Redox. Biol. 2023, 60, 102617.
doi: 10.1016/j.redox.2023.102617 |
[5] |
Li, N. S. Acc. Chem. Res. 2011, 44, 1257.
doi: 10.1021/ar200131t |
[6] |
Haruki, H.; Pedersen, M. G.; Gorska, K. I.; Pojer, F.; Johnsson, K. Science 2013, 340, 987.
doi: 10.1126/science.1232972 |
[7] |
Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
doi: 10.1039/C4CS00239C |
[8] |
Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
doi: 10.1021/ar800098p |
[9] |
Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
doi: 10.1021/cr100347k pmid: 21391564 |
[10] |
Jing, D.; Lu, C.; Chen, Z.; Jin, S.; Xie, L.; Meng, Z.; Su, Z.; Zheng, K. Angew. Chem., Int. Ed. 2019, 58, 14666.
doi: 10.1002/anie.v58.41 |
[11] |
Lu, C.J.; Xu, Q.; Feng, J.; Liu, R.R. Angew. Chem., Int. Ed. 2023, 62, e202216863.
doi: 10.1002/anie.v62.9 |
[12] |
Bisz, E.; Szostak, M. ChemSusChem 2017, 10, 3964.
doi: 10.1002/cssc.v10.20 |
[13] |
Nasrollahzadeh, M. Molecules 2018, 23, 2532.
doi: 10.3390/molecules23102532 |
[14] |
He, Z.; Wu, D.; Vessally, E. Top Curr. Chem. (Cham). 2020, 378, 46.
|
[15] |
Zhao, W.; Zhang, F.; Deng, G. J. Org. Chem. 2021, 86, 291.
doi: 10.1021/acs.joc.0c02078 |
[16] |
Karreman, S.; Karnbrock, S.B.H.; Kolle, S.; Golz, C.; Alcarazo, M. Org. Lett. 2021, 23, 1991.
doi: 10.1021/acs.orglett.1c00087 pmid: 33648340 |
[17] |
Ru-Jian, Y.; Chun-Yan, Z.; Xiang, Z.; Xiong, Y.; Duan, X. Org. Biomol. Chem. 2021, 19, 2901.
doi: 10.1039/D1OB00106J |
[18] |
Wang, Y.-D.; Li, F. -, H.; Zeng, Q.-L. Acta Chem. Sinica 2022, 80, 386. (in Chinese)
|
(王一丁, 李福海, 曾庆乐, 化学学报, 2022, 80, 386.)
doi: 10.6023/A21110536 |
|
[19] |
Hanaya, K.; Ohtsu, H.; Kawano, M.; Higashibayashi, S.; Sugai, T. Asian J. Org.Chem. 2021, 10, 582.
|
[20] |
Liu, Y.; Liu, S.; Xiao, Y. Beilstein J. Org. Chem. 2017, 13, 589.
doi: 10.3762/bjoc.13.58 |
[21] |
Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069.
doi: 10.1016/S0040-4020(01)00157-0 |
[22] |
Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397.
doi: 10.1016/j.tet.2004.05.044 |
[23] |
Jiang, Z.; She, J.; Lin, X. Adv. Synth. Catal. 2009, 351, 2558.
doi: 10.1002/adsc.v351:16 |
[24] |
Fernández-Rodríguez, M. A.; Hartwig, P. J. Chem.-Eur. J. 2010, 16, 2355.
doi: 10.1002/chem.200902313 pmid: 20112309 |
[25] |
Sayah, M.; Organ, M. G. Chem.-Eur. J. 2011, 17, 11719.
doi: 10.1002/chem.v17.42 |
[26] |
Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803.
doi: 10.1021/ol0264105 |
[27] |
Basu, B.; Mandal, B.; Das, S.; Kundu, S. Tetrahedron Lett. 2009, 50, 5523.
doi: 10.1016/j.tetlet.2009.07.076 |
[28] |
Kao, H.; Chen, C.; Wang, Y.; Lee, C. Eur. J. Org. Chem. 2011, 2011, 1776.
|
[29] |
Baig, R. B.; Varma, R. S. J. Chem. Commun. 2012, 48, 2582.
doi: 10.1039/c2cc17283f |
[30] |
Woo, H.; Mohan, B.; Heo, E.; Park, J.; Song, H.; Park, K. Nanoscale Res. Lett. 2013, 8, 390.
doi: 10.1186/1556-276X-8-390 |
[31] |
Priya, D. D.; Roopan, S. M.; Singh, S.; Bansal, J.; Shanavas, S.; Khan, M. R.; Al-Dhabi, N. A.; Arasu, M. V.; Duraipandiyan, V. Mater. Lett. 2020, 266, 127486.
doi: 10.1016/j.matlet.2020.127486 |
[32] |
Huang, Y.; Tsai, W.; Badsara, S. S.; Chan, C.; Lee, C. J. Chin. Chem. Soc. 2014, 61, 967.
doi: 10.1002/jccs.v61.9 |
[33] |
Panova, Y. S.; Kashin, A. S.; Vorobev, M. G.; Degtyareva, E. S.; Ananikov, V. P. ACS Catal. 2016, 6, 3637.
doi: 10.1021/acscatal.6b00337 |
[34] |
Sengupta, D.; Basu, B. J. Org. Med. Chem. Lett. 2014, 4, 17.
doi: 10.1186/s13588-014-0017-7 |
[35] |
Thomas, A. M.; Asha, S.; Sindhu, K. S.; Anilkumar, G. Tetrahedron Lett. 2015, 56, 6560.
doi: 10.1016/j.tetlet.2015.10.014 |
[36] |
Zhang, B.; Yang, L.; Shi, R.; Kang, Y. Chin. J. Org. Chem. 2016, 36, 352. (in Chinese)
doi: 10.6023/cjoc201509026 |
(张变香, 杨丽花, 史瑞雪, 亢永强, 有机化学, 2016, 36, 352.)
doi: 10.6023/cjoc201509026 |
|
[37] |
Chen, C. W.; Chen, Y. L.; Reddy, D. M.; Du, K.; Li, C.; Shih, B.; Xue, Y.; Lee, C. F. Chem.-Eur. J. 2017, 23, 10087.
doi: 10.1002/chem.v23.42 |
[38] |
Li, Z.; Li, T.; Liu, J.; Wang, X. Tetrahedron 2020, 76,130915.
doi: 10.1016/j.tet.2019.130915 |
[39] |
Panigrahi, R.; Sahu, S. K.; Behera, P. K.; Panda, S.; Rout, L. Chem.-Eur. J. 2020, 26, 620.
doi: 10.1002/chem.201904801 pmid: 31702851 |
[40] |
Bakare, S. P.; Patil, M. New J. Chem. 2022, 46, 6283.
doi: 10.1039/D2NJ00043A |
[41] |
Katla R.; Katla, R. New J. Chem. 2022, 46, 13918.
doi: 10.1039/D2NJ02065C |
[42] |
Singha, R.; Chettri, S.; Brahman, D.; Sinha, B.; Ghosh, P. Mol. Diversity 2022, 26, 505.
doi: 10.1007/s11030-020-10180-5 |
[43] |
Zhang, J.; Medley, C. M.; Krause, J. A.; Guan, H. Organometallics 2010, 29, 6393.
doi: 10.1021/om100816d |
[44] |
Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760.
doi: 10.1021/jacs.5b11244 pmid: 26840123 |
[45] |
Guo, F.; Sun, J.; Xu, Z.; Kühn, F. E.; Zang, S.; Zhou, M. Catal. Commun. 2017, 96, 11.
doi: 10.1016/j.catcom.2017.02.007 |
[46] |
Rodríguez-Cruz, M. A.; Hernández-Ortega, S.; Valdés, H.; Rufino-Felipe, E.; Morales-Morales, D. J. Catal. 2020, 383, 193.
doi: 10.1016/j.jcat.2020.01.016 |
[47] |
Sikari, R.; Sinha, S.; Das, S.; Saha, A.; Chakraborty, G.; Mondal, R.; Paul, N. D. J. Org. Chem. 2019, 84, 4072.
doi: 10.1021/acs.joc.9b00075 pmid: 30855958 |
[48] |
Wang, Y.; Deng, L.; Wang, X.; Wu, Z.; Wang, Y.; Pan, Y. ACS Catal. 2019, 9, 1630.
doi: 10.1021/acscatal.8b04633 |
[49] |
Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033.
doi: 10.1002/anie.v58.15 |
[50] |
Talukder, M. M.; Miller, J. T.; Cue, J. M. O.; Udamulle, C. M.; Bhadran, A.; Biewer, M. C.; Stefan, M. C. Organometallics 2021, 40, 83.
doi: 10.1021/acs.organomet.0c00732 |
[51] |
Martin, M. T.; Marin, M.; Maya, C.; Prieto, A.; Nicasio, M. C. Chem.-Eur. J. 2021, 27, 12320.
doi: 10.1002/chem.v27.48 |
[52] |
Oechsner, R. M.; Wagner, J. P.; Fleischer, I. ACS Catal. 2022, 12, 2233.
doi: 10.1021/acscatal.1c04895 |
[53] |
Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11, 1697.
doi: 10.1021/ol900009a |
[54] |
Li, L.; Wu, J.; Chen, R.; Zhou, Q.; Xu, T.; Jiang, H. J. Zhejiang Univ. (Sci. Ed.) 2012, 39, 313. (in Chinese)
|
(李龙彪, 吴剑娇, 陈仁尔, 周其忠, 徐土根, 蒋华江, 浙江大学学报(理学版), 2012, 39, 313.)
|
|
[55] |
Zhu, Y. Y.; Lan, G.; Fan, Y.; Veroneau, S. S.; Song, Y.; Micheroni, D.; Lin, W. J. Angew. Chem., Int. Ed. 2018, 57, 14090.
doi: 10.1002/anie.v57.43 |
[56] |
Mohammadinezhad, A.; Akhlaghinia, B. J. New J. Chem. 2019, 43, 15525.
doi: 10.1039/c9nj03400e |
[57] |
Yu, F.; Mao, R.; Yu, M.; Gu, X.; Wang, Y. J. J. Org. Chem. 2019, 84, 9946.
doi: 10.1021/acs.joc.9b01113 |
[58] |
Franco, M.; Vargas, E. L.; Tortosa, M.; Cid, M. B. Chem. Commun. 2021, 57, 11653.
doi: 10.1039/D1CC05294B |
[59] |
Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874.
doi: 10.1021/ol402948k |
[60] |
Saini, V.; Khungar, B. New J. Chem. 2018, 42, 12796.
doi: 10.1039/C8NJ00904J |
[61] |
Wang, Y.; Zhang, X.; Liu, H.; Chen, H.; Huang, D. Org. Chem. Front. 2017, 4, 31.
doi: 10.1039/C6QO00451B |
[62] |
Zhu, D. L.; Wu, Q.; Li, H. Y.; Li, H. X.; Lang, J. P. Chem. Eur. J. 2020, 26, 3484.
doi: 10.1002/chem.v26.16 |
[63] |
Yan, Q.; Cui, W.; Song, X.; Xu, G.; Jiang, M.; Sun, K.; Lv, J.; Yang, D. Org. Lett. 2021, 23, 3663.
doi: 10.1021/acs.orglett.1c01050 |
[64] |
Jiang, S.; Zhang, Z.-T.; Young, D. J.; Chai, L.-L.; Wu, Q.; Li, H.-X. Org. Chem. Front. 2022, 9, 1437.
doi: 10.1039/D1QO01850G |
[65] |
Kang, J.; Li, Z.; Chen, C.; Dong, L.; Zhang, S. J. Org. Chem. 2021, 86, 15326.
doi: 10.1021/acs.joc.1c01891 |
[66] |
Wang, Y.; Zhang, F.; Wang, Y.; Pan, Y. Eur. J. Org. Chem. 2022, 2022, 88.
|
[67] |
Zhong, S.; Zhou, Z.; Zhao, F.; Mao, G.; Deng, G.-J.; Huang, H. Org. Lett. 2022, 24, 1865.
doi: 10.1021/acs.orglett.2c00478 |
[68] |
Liu, Y.; Xing, S.; Zhang, J.; Liu, W.; Xu, Y.; Zhang, Y.; Yang, K.; Yang, L.; Jiang, K.; Shao, X. Org. Chem. Front. 2022, 9, 1375.
doi: 10.1039/D1QO01873F |
[69] |
Zhang, Y.; Liu, W.; Xu, Y.; Liu, Y.; Peng, J.; Wang, M.; Bai, Y.; Lu, H.; Shi, Z.; Shao, X. Org. Lett. 2022, 24, 6794.
doi: 10.1021/acs.orglett.2c02680 pmid: 36102599 |
[70] |
Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Samadi, A. J. Mol. Catal. A: Chem. 2013, 377, 190.
doi: 10.1016/j.molcata.2013.05.012 |
[71] |
Roy, S.; Phukan, P. J. Tetrahedron Lett. 2015, 56, 2426.
doi: 10.1016/j.tetlet.2015.03.075 |
[72] |
Nowrouzi, N.; Mohammad, A.; Hadis, L. Appl. Organomet. Chem. 2017, 31, e3579.
doi: 10.1002/aoc.v31.3 |
[73] |
Magne, V.; Ball, L. T. Chem.-Eur. J. 2019, 25, 8903.
doi: 10.1002/chem.v25.37 |
[74] |
Iraqui, S.; Rashid, M. H. New J. Chem. 2022, 46, 22766.
doi: 10.1039/D2NJ04847G |
[75] |
Liu, Z.; Quyang, K.; Yang, N. Org. Biomol. Chem. 2018, 16, 988.
doi: 10.1039/C7OB02836A |
[76] |
Xu, X.; Wang, W.; Lu, L.; Zhang, J.; Luo, J. Catal. Lett. 2022, 152, 3031.
doi: 10.1007/s10562-021-03908-x |
[77] |
Liu, Y.; Xu, Y.; Zhang, Y.; Gao, W.; Shao, X. Org. Chem. Front. 2022, 9, 6490.
doi: 10.1039/D2QO01317G |
[78] |
Xu, Y.; Liu, Y.; Zhang, Y.; Yang, K.; Wang, Y.; Peng, J.; Shao, X.; Bai, Y. J. Org. Chem. 2023, 88, 2773.
doi: 10.1021/acs.joc.2c02360 |
[79] |
Peng, K.; Gao, M.; Yi, Y.; Guo, J.; Dong, Z. Eur. J. Org. Chem. 2020, 2020, 1665.
doi: 10.1002/ejoc.v2020.11 |
[80] |
Zhao, T.; Liang, F.; Cai, M.; Chen, J.; Kang, C.; Wang, H.; Wu, Q. Asian J. Org. Chem. 2020, 9, 214.
doi: 10.1002/ajoc.v9.2 |
[81] |
Sawada, N.; Itoh, T.; Yasuda, N. Tetrahedron Lett. 2006, 47, 6595.
doi: 10.1016/j.tetlet.2006.07.008 |
[82] |
Hoogenband, A.; Lange, J. H. M.; Bronger, R. P. J.; Terpstra, J. W. J. Tetrahedron Lett. 2010, 51, 6877.
doi: 10.1016/j.tetlet.2010.10.125 |
[83] |
Park, N.; Park, K.; Jang, M.; Lee, S. J. J. Org. Chem. 2011, 76, 4371.
doi: 10.1021/jo2007253 |
[84] |
Hopkins, B. A.; Zavesky, B.; White, D. J. Org. Chem. 2022, 87, 7547.
doi: 10.1021/acs.joc.2c00574 |
[85] |
Soleiman-Beigi, M.; Mohammadi, F. J. Tetrahedron Lett. 2012, 53, 7028.
doi: 10.1016/j.tetlet.2012.10.016 |
[86] |
Prasad, D. J. C.; Sekar, G. J. Org. Lett. 2011, 13, 1008.
doi: 10.1021/ol103041s pmid: 21271689 |
[87] |
Soundarya, P.; Sekar, G. Org. Biomol. Chem. 2022, 20, 7405.
doi: 10.1039/D2OB01211A |
[88] |
Tao, C.; Lv, A.; Zhao, N.; Yang, S.; Liu, X.; Zhou, J.; Liu, W.; Zhao, J. Synlett 2011, 134.
|
[89] |
Soleiman-Beigi, M.; Hemmati, M. J. Appl. Organomet. Chem. 2013, 27, 734.
doi: 10.1002/aoc.v27.12 |
[90] |
Zhang, W.; Huang, M.; Zou, Z.; Wu, Z.; Ni, S.; Kong, L.; Zheng, Y.; Wang, Y.; Pan. Y. Chem. Sci. 2021, 12, 2509.
doi: 10.1039/D0SC06446G |
[91] |
Christian, A. H. J. Org. Chem. 2021, 86, 10914.
doi: 10.1021/acs.joc.1c01309 |
[92] |
Chen, H. Y.; Peng, W. T.; Lee, Y. H.; Chang, Y. L.; Chen, Y. J.; Lai, Y. C.; Jheng, N. Y.; Chen, H. Y. Organometallics 2013, 32, 5514.
doi: 10.1021/om400784w |
[93] |
Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Org. Biomol. Chem. 2013, 11, 2943.
doi: 10.1039/c3ob40464a |
[94] |
Rostami, A.; Rostami, A.; Iranpoor, N.; Zolfigol, M. A. Tetrahedron Lett. 2016, 57, 192.
doi: 10.1016/j.tetlet.2015.11.093 |
[95] |
Semwal, R.; Ravi, C.; Saxena, S.; Adimurthy, S. J. Org. Chem. 2019, 84, 14151.
doi: 10.1021/acs.joc.9b01632 |
[96] |
He, X.; Song, W.; Liu, X.; Huang, J.; Feng, R.; Zhou, S.; Hong, J.; Ge, X. Green Chem. 2023, 25, 1311.
doi: 10.1039/D2GC03694K |
[97] |
Yu, W.; Wu, W.; Jiang, H. Chin. J. Chem. 2019, 37, 1158.
doi: 10.1002/cjoc.v37.11 |
[98] |
Yang, F.; He, G.-C.; Sun, S.-H.; Song, T.-T.; Min, X.-T.; Ji, D.-W.; Guo, S.-Y.; Chen, Q.-A. J. Org. Chem. 2022, 87, 14241.
doi: 10.1021/acs.joc.2c01750 |
[99] |
Palani, T.; Park, K.; Song, K. H.; Lee, S. Adv. Synth. Catal. 2013, 355, 1160.
doi: 10.1002/adsc.v355.6 |
[100] |
Li, Y.; Nie, C.; Wang, H.; Li, X.; Verpoort, F.; Duan, C. Eur. J. Org. Chem. 2011, 2011, 7331.
doi: 10.1002/ejoc.v2011.36 |
[101] |
Nowrouzi, N.; Abbasi, M.; Latifi, H. Chin. J. Catal. 2016, 37, 1550.
doi: 10.1016/S1872-2067(16)62486-5 |
[102] |
Adib, M.; Sadeghi, V.; Veisi, H. Tetrahedron Lett. 2018, 59, 1928.
doi: 10.1016/j.tetlet.2018.03.092 |
[103] |
Li, G.; Yan, Q.; Gan, Z.; Li, Q.; Dou, X.; Yang, D. Org. Lett. 2019, 21, 7938.
doi: 10.1021/acs.orglett.9b02921 |
[104] |
Nowrouzi, N.; Abbasi, M.; Shahidzadeh, E. S. Appl. Organomet. Chem. 2023, 37, e6941.
doi: 10.1002/aoc.v37.2 |
[105] |
Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454.
doi: 10.1021/ol102784c |
[1] | Qinghan Li, Ruiqiang Luo, Chuan Wu, Hongliu Xiao, Shaopeng Guo, Zhihao Zhang, Zheyao Huang, Lin Zhou. Research Progress of Cross-Coupling Reactions of Alkylaluminums with Electrophiles Reagents [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1489-1497. |
[2] | Yaping Yi, Wei Hang, Chanjuan Xi. Recent Advance of Transition-Metal-Catalyzed Tandem Carboxylation Reaction of Unsaturated Hydrocarbons with Organometallic Reagents and CO2 [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 80-93. |
[3] | Xu Xiuzhi, Zhang Fan, Huang Sheng, Zhang Zhiqiang, Ke Fang. Visible-Light Promoted Hydroxylation of Aryl Halides under Mild Reaction Conditions in Neat Water [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2912-2918. |
[4] | Qiu Huihua, Lin Baiyin, Zhou Peng, Zhang Jiantao, Liu Weibing. Researches on the Hydrodehalogenation of o-Triazole Aryl Halides in the System of Pd/C and Et3N [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1372-1377. |
[5] | Mao Pu, Zhu Junliang, Yuan Jinwei, Yang Liangru, Xiao Yongmei, Zhang Changsen. Recent Advances on the Catalytic Functionalization of Quinoxalin- 2(1H)-ones via C-H Bond Activation [J]. Chin. J. Org. Chem., 2019, 39(6): 1529-1547. |
[6] | Yin, Qing, Yu, Xiaoqiang, Bao, Ming. A Novel Method for the Synthesis Triarylphosphines under Transition-Metal-Free Conditions [J]. Chinese Journal of Organic Chemistry, 2019, 39(10): 2930-2935. |
[7] | Liu Shuainan, Yuan Jinwei, Qu Lingbo. Progress in the Synthesis of Arylated Coumarin Derivatives [J]. Chin. J. Org. Chem., 2018, 38(2): 316-327. |
[8] | Guo Fangjie, He Yuxuan, Wang Jingyun, Sun Jing, Zhou Mingdong. Potassium tert-Butoxide Promoted Formation of Alkyl Aryl Thioethers at Room Temperature: Synthesis and Mechanism [J]. Chin. J. Org. Chem., 2017, 37(6): 1556-1559. |
[9] | Yang Qin, Lang Wencheng, Song Xueping, Yin Mengyun, Zhou Limei. Copper Montmorillonite Modified by Biquaternary Ammonium Salts for Coupling of Aryl Halides with Aqueous Ammonia [J]. Chin. J. Org. Chem., 2017, 37(11): 3000-3005. |
[10] | Zhou Wenjun, Wang Dan, Zhang Xiazhong, Zeng Bin. Preparation and Catalytic Properties of a Novel Bamboo Fiber Supported-Palladium Catalyst (Fiber-Pd) [J]. Chin. J. Org. Chem., 2016, 36(6): 1412-1418. |
[11] | Chen Pingliang, Lu Shijie, Hu Xingen, Xu Qing. CsOH/DMSO Promoted Reactions of Aryl Halides with Phenols: A Convenient Method for the Synthesis of Diaryl Ethers [J]. Chin. J. Org. Chem., 2014, 34(1): 112-117. |
[12] | FANG Shai, LV Mei-Xiang, LONG Yu-Hua, YANG Ding-Qiao. Progress in Palladium-Catalyzed Amination of Aryl Halides [J]. Chin. J. Org. Chem., 2011, 31(10): 1573-1581. |
[13] | QIN Yuan-Cheng, PENG Qiang. Recent Progress in Copper-Catalyzed C—S Coupling Reactions [J]. Chin. J. Org. Chem., 2011, 31(08): 1169-1179. |
[14] | PENG Zong-Hai, MA Meng-Lin, FU Hai-Yan, CHEN Hua. Synthesis of a New Biphenyl Diphosphine Ligand and Its Pd-Catalyzed Suzuki-Miyaura Reaction [J]. Chin. J. Org. Chem., 2010, 30(10): 1529-1534. |
[15] | ZHANG Lei, CUI Yuan-Chen. Progress in Heck Reaction Catalyzed by Non-palladium Catalyst [J]. Chin. J. Org. Chem., 2010, 30(02): 167-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||