Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (2): 561-572.DOI: 10.6023/cjoc202308015 Previous Articles Next Articles
ARTICLES
收稿日期:
2023-08-17
修回日期:
2023-10-19
发布日期:
2023-11-07
基金资助:
Yong Zhang, Zhigao Tian, Lin Huang, Qiufei Hou, Honghong Fan, Wanqiang Wang()
Received:
2023-08-17
Revised:
2023-10-19
Published:
2023-11-07
Contact:
E-mail: Supported by:
Share
Yong Zhang, Zhigao Tian, Lin Huang, Qiufei Hou, Honghong Fan, Wanqiang Wang. Application of α-Cyanohydrin Methanesulfonates for the Synthesis of α-Aminonitriles[J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 561-572.
Entry | Base | Solvent | Yieldb/% |
---|---|---|---|
1 | LiOH | CH3CN | 23 |
2 | LiOH | Acetone | 41 |
3 | LiOH | EtOAc | 55 |
4 | LiOH | i-PrOH | 69 |
5 | LiOH | Toluene | 73 |
6 | CsOAc | Toluene | 30 |
7 | NaHCO3 | Toluene | 54 |
8 | K2CO3 | Toluene | 84 |
9 | NaOH | Toluene | 30 |
10 | LiOt-Bu | Toluene | 23 |
11 | — | Toluene | 70 |
Entry | Base | Solvent | Yieldb/% |
---|---|---|---|
1 | LiOH | CH3CN | 23 |
2 | LiOH | Acetone | 41 |
3 | LiOH | EtOAc | 55 |
4 | LiOH | i-PrOH | 69 |
5 | LiOH | Toluene | 73 |
6 | CsOAc | Toluene | 30 |
7 | NaHCO3 | Toluene | 54 |
8 | K2CO3 | Toluene | 84 |
9 | NaOH | Toluene | 30 |
10 | LiOt-Bu | Toluene | 23 |
11 | — | Toluene | 70 |
[1] |
(a) Feldman, P. L.; Brackeen, M. F. J. Org. Chem. 1990, 55, 4207.
doi: 10.1021/jo00300a047 pmid: 21851054 |
(b) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359.
doi: 10.1039/a908290e pmid: 21851054 |
|
(c) Connon S. J. Angew. Chem.. Int. Ed. 2008, 47, 1176.
doi: 10.1002/anie.v47:7 pmid: 21851054 |
|
(d) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.
doi: 10.1021/cr200057t pmid: 21851054 |
|
(d) Zhang, F.-G.; Zhu, X.-Y.; Li, S.; Nie, J.; Ma, J.-A. Chem. Commun. 2012, 48, 11552.
doi: 10.1039/c2cc36307k pmid: 21851054 |
|
(e) Bachon, A.-K.; Opatz, T. J. Org. Chem. 2016, 81, 1858.
doi: 10.1021/acs.joc.5b02659 pmid: 21851054 |
|
(f) Kurono, N.; Ohkuma, T. ACS Catal. 2016, 6, 989.
doi: 10.1021/acscatal.5b02184 pmid: 21851054 |
|
(g) Kouznetsov, V. V.; Galvis, C. E. P. Tetrahedro. 2018, 74, 773.
doi: 10.1016/j.tet.2018.01.005 pmid: 21851054 |
|
(h) Grundke, C.; Vierengel, N.; Opatz, T. Chem. Rec. 2020, 20, 989.
doi: 10.1002/tcr.v20.9 pmid: 21851054 |
|
(i) Ullah, B.; Gupta, N. K.; Ke, Q.; Ullah, N.; Cai, X.; Liu, D. Catalyst. 2022, 12, 1149.
doi: 10.3390/catal12101149 pmid: 21851054 |
|
(j) Zhou, Y.; Chen, H.; Lei, P.; Gui, C.; Wang, H.; Yan, Q.; Wang, W.; Chen, F. Chin. Chem. Lett. 2022, 33, 4850.
doi: 10.1016/j.cclet.2022.02.029 pmid: 21851054 |
|
[2] |
Fukuyama, T.; Yang, L.; Ajeck, K. L.; Sachleben, R. A. J. Am. Chem. Soc. 1990, 112, 3712.
doi: 10.1021/ja00165a095 |
[3] |
Martinez, E. J.; Owa, T.; Schreiber, S. L.; Corey, E. J. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 3496.
doi: 10.1073/pnas.96.7.3496 |
[4] |
Carreño Otero, A. L.; Vargas Méndez, L. Y.; Duque L, J. E.; Kouznetsov, V. V. Eur. J. Med. Chem. 2014, 78, 392.
doi: 10.1016/j.ejmech.2014.03.067 pmid: 24704612 |
[5] |
Gauthier, J. Y.; Chauret, N.; Cromlish, W.; Desmarais, S.; Duong, L. T.; Falgueyret, J.-P.; Kimmel, D. B.; Lamontagne, S.; Léger, S.; LeRiche, T.; Li, C. S.; Massé, F.; McKay, D. J.; Nicoll-Griffith, D. A.; Oballa, R. M.; Palmer, J. T.; Percival, M. D.; Riendeau, D.; Robichaud, J.; Rodan, G. A.; Rodan, S. B.; Seto, C.; Thérien, M.; Truong, V.-L.; Venuti, M. C.; Wesolowski, G.; Young, R. N.; Zamboni, R.; Black, W. C. Bioorg. Med. Chem. Lett. 2008, 18, 923.
doi: 10.1016/j.bmcl.2007.12.047 pmid: 18226527 |
[6] |
Deacon, C. F.; Holst, J. J. Adv. Thermoelectr. 2009, 26, 488.
|
[7] |
Kuhn, B.; Hennig, M.; Mattei, P. Curr. Top. Med. Chem. 2007, 7, 609.
doi: 10.2174/156802607780091064 |
[8] |
Strecker A. Liebigs Ann. Chem. 1850, 75, 27.
doi: 10.1002/jlac.v75:1 |
[9] |
(a) Shen, K.; Liu, X.; Cai, Y.; Lin, L.; Feng, X. Chem.-Eur. J. 2009, 15, 6008.
doi: 10.1002/chem.200900210 pmid: 19418513 |
(b) Harusawa, S.; Shioiri, T. Tetrahedro. 2016, 72, 8125.
doi: 10.1016/j.tet.2016.09.070 pmid: 19418513 |
|
(c) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 762.
doi: 10.1021/ja9935207 pmid: 19418513 |
|
(d) Davis, F. A.; Reddy, R. E.; Portonovo, P. S. Tetrahedron Lett. 1994, 35, 9351.
doi: 10.1016/S0040-4039(00)78540-6 pmid: 19418513 |
|
(e) Cruz-Acosta, F.; Santos-Expósito, A.; de Armas, P.; García-Tellado, F. Chem. Commun. 2009, 6839.
pmid: 19418513 |
|
(f) Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2009, 131, 15118.
doi: 10.1021/ja907268g pmid: 19418513 |
|
[10] |
(a) Sun, P.; Qian, C.; Wang, L.; Chen, R. Synth. Commun. 2002, 32, 2973.
doi: 10.1081/SCC-120012986 |
(b) Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedro. 2002, 58, 2529.
doi: 10.1016/S0040-4020(02)00132-1 |
|
(c) De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 7407.
doi: 10.1016/j.tetlet.2004.08.071 |
|
(d) De S. K. J. Mol. Catal. A: Chem. 2005, 225, 169.
doi: 10.1016/j.molcata.2004.09.005 |
|
(e) De S. K. Synth. Commun. 2005, 35, 653.
doi: 10.1081/SCC-200050347 |
|
(f) Paraskar, A. S.; Sudalai, A. Tetrahedron Lett. 2006, 47, 5759.
|
|
[11] |
Pan, S. C.; List, B. Synlet. 2007, 2007, 0318.
doi: 10.1055/s-2007-968008 |
[12] |
Das, B.; Ramu, R.; Ravikanth, B.; Reddy, K. R. Synthesi. 2006, 2006, 1419.
doi: 10.1055/s-2006-926421 |
[13] |
Royer, L.; De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 4595.
|
[14] |
(a) Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Chem. Commun. 2011, 47, 2354.
doi: 10.1039/C0CC03844J pmid: 30986072 |
(b) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317.
doi: 10.1021/ja211697s pmid: 30986072 |
|
(c) Sonobe, T.; Oisaki, K.; Kanai, M. Chem. Sci. 2012, 3, 3249.
doi: 10.1039/c2sc20699d pmid: 30986072 |
|
(d) Tanoue, A.; Yoo, W.-J.; Kobayashi, S. Org. Lett. 2014, 16, 2346.
doi: 10.1021/ol500661t pmid: 30986072 |
|
(e) Ushakov, D. B.; Gilmore, K.; Kopetzki, D.; McQuade, D. T.; Seeberger, P. H. Angew. Chem.. Int. Ed. 2014, 53, 557.
pmid: 30986072 |
|
(f) Wagner, A.; Ofial, A. R. J. Org. Chem. 2015, 80, 2848.
doi: 10.1021/jo502846c pmid: 30986072 |
|
(g) Shen, H.; Hu, L.; Liu, Q.; Hussain, M. I.; Pan, J.; Huang, M.; Xiong, Y. Chem. Commun. 2016, 52, 2776.
doi: 10.1039/C5CC10346K pmid: 30986072 |
|
(h) Vega, J. A.; Alonso, J. M.; Méndez, G.; Ciordia, M.; Delgado, F.; Trabanco, A. A. Org. Lett. 2017, 19, 938.
doi: 10.1021/acs.orglett.7b00117 pmid: 30986072 |
|
(i) Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Kumar, A. V. J. Org. Chem. 2018, 83, 4477.
doi: 10.1021/acs.joc.8b00203 pmid: 30986072 |
|
(j) Nauth, A. M.; Schechtel, E.; Dören, R.; Tremel, W.; Opatz, T. J. Am. Chem. Soc. 2018, 140, 14169.
doi: 10.1021/jacs.8b07539 pmid: 30986072 |
|
(k) Wakaki, T.; Sakai, K.; Enomoto, T.; Kondo, M.; Masaoka, S.; Oisaki, K.; Kanai, M. Chem.-Eur. J. 2018, 24, 8051.
doi: 10.1002/chem.v24.32 pmid: 30986072 |
|
(l) Mudithanapelli, C.; Dhorma, L. P.; Kim, M.-H. Org. Lett. 2019, 21, 3098.
doi: 10.1021/acs.orglett.9b00751 pmid: 30986072 |
|
(m) Shi, S.; Yang, X.; Tang, M.; Hu, J.; Loh, T.-P. Org. Lett. 2021, 23, 4018.
doi: 10.1021/acs.orglett.1c01232 pmid: 30986072 |
|
[15] |
(a) Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Angew. Chem.. Int. Ed. 2010, 49, 6369.
doi: 10.1002/anie.v49:36 pmid: 25815605 |
(b) Inamoto, Y.; Kaga, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2013, 15, 3452.
doi: 10.1021/ol4015317 pmid: 25815605 |
|
(c) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696.
doi: 10.1021/acs.orglett.5b00664 pmid: 25815605 |
|
(d) Fuentes de Arriba, Á. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem.. Int. Ed. 2017, 56, 3655.
doi: 10.1002/anie.v56.13 pmid: 25815605 |
|
(e) Trillo, P.; Slagbrand, T.; Adolfsson, H. Angew. Chem.. Int. Ed. 2018, 57, 12347.
doi: 10.1002/anie.v57.38 pmid: 25815605 |
|
(f) Ong, D. Y.; Fan, D.; Dixon, D. J.; Chiba, S. Angew. Chem.. Int. Ed. 2020, 59, 11903.
doi: 10.1002/anie.v59.29 pmid: 25815605 |
|
(g) Yan, F.; Huang, Z.; Du, C.-X.; Bai, J.-F.; Li, Y. J. Catal. 2021, 395, 188.
doi: 10.1016/j.jcat.2021.01.003 pmid: 25815605 |
|
(h) Yu, B.; Bodinier, F.; Saague-Tenefo, M.; Gerardo, P.; Ardisson, J.; Lannou, M.-I.; Sorin, G. Eur. J. Org. Chem. 2021, 2021, 3634.
doi: 10.1002/ejoc.v2021.25 pmid: 25815605 |
|
(i) Liu, L.; Liu, Y.; Shen, X.; Zhang, X.; Deng, S.; Chen, Y. J. Org. Chem. 2022, 87, 6321.
doi: 10.1021/acs.joc.1c02835 pmid: 25815605 |
|
[16] |
Liu, T.-L.; Li, Z.-F.; Tao, J.; Li, Q.-H.; Li, W.-F.; Li, Q.; Ren, L.-Q.; Peng, Y.-G. Chem. Commun. 2020, 56, 651.
doi: 10.1039/C9CC08576A |
[17] |
(a) Wang, L.-G.; Zheng, Y.-X.; Zhou, X.; Wang, H.-F.; Yan, Q.-J.; Wang, W.; Chen, F.-E. Chin. J. Org. Chem. 2023, 43, 668 (in Chinese).
doi: 10.6023/cjoc202208029 |
(王雷刚, 郑逸轩, 周希, 王海峰, 严琼姣, 汪伟, 陈芬儿, 有机化学. 2023, 43, 668.)
doi: 10.6023/cjoc202208029 |
|
(b) Liu, S.; Meng, L.; Zeng, X.; Hammond, G. B.; Xu, B. Chin. J. Chem. 2021, 39, 913.
doi: 10.1002/cjoc.v39.4 |
|
[18] |
(a) Ueda, M.; Nishimura, K.; Ryu, I. Synlet. 2013, 24, 1683.
doi: 10.1055/s-00000083 |
(b) Wu, G.; Xu, S.; Deng, Y.; Wu, C.; Zhao, X.; Ji, W.; Zhang, Y.; Wang, J. Tetrahedro. 2016, 72, 8022.
doi: 10.1016/j.tet.2016.10.031 |
|
(c) Li, C.; Zhang, Y.; Sun, Q.; Gu, T.; Peng, H.; Tang, W. J. Am. Chem. Soc. 2016, 138, 10774.
doi: 10.1021/jacs.6b06285 |
[1] | Zhiyou Huang, Ping Yang, Bo He, Wenxia Ou, Siyu Yuan. Design and Synthesis of Morpholine Sulfonamide Compound and Its Inhibition on Soybean Seed Germination [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 309-315. |
[2] | Leigang Wang, Yixuan Zheng, Xi Zhou, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fener Chen. Synthesis of α-Aryl Nitriles via Nucleophilic Substitution of α-Cyanohydrin Methanesulfonates with Malonates [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 668-678. |
[3] | Yuan Zhu, Leyuan Chen, Wenbin Hou, Yiliang Li. Recent Progress in Nucleophilic Fluoride Mediated Fluorine-18 Labeling of Arenes and Heteroarenes [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1774-1788. |
[4] | Zhaowei Bao, Jie Lü, Zhichao Jin. Photochemical Reduction of Nitroaromatics Mediated by p-Toluenethiol/PCy3 [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4773-4779. |
[5] | Xinling Li, Huili Liu, Shunji Zhang. Direct Nucleophilic Substitution of Propargyl Alcohols with Enoxysilanes [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 407-411. |
[6] | Liu Na, Guo Siqi, Liu Junfang, Chen Yantao, Xu Xiaoming, Zhang Jing, Kang Yaqing, Luo Cheng, Chen Shijie, Chen Hua. Design, Synthesis, and Biological Activities of Novel Triazolothiadiazole Derivatives Linked with Amino Side Chain Containing Urea Group as DOT1L Inhibitors [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2450-2459. |
[7] | Li Ruoxin, Han Rui, Gao Jinming. Synthesis of Key Intermediate of Cyathane Diterpenes [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2148-2152. |
[8] | Zhang Shunji, Liu Huili. Sulfuric Acid Catalyzed Rapid Nucleophilic Substitution of Propargyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1257-1265. |
[9] | Han Man-Yi, Pan Hong, Yao Ziyun, Li Qi. n-Bu4NBr Catalyzed Brook Rearrangement/Alkylation Reaction [J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4274-4283. |
[10] | Liu Xueying, Liu Zhenwei, Guo Yuanyuan, Li Jingya, Zou Dapeng, Wu Yusheng, Wu Yangjie. One-Pot, Two-Step Reductive Amination of Boronate Ester Containing Aromatic Amines and Aldehydes Using B2pin2 as Reductant [J]. Chin. J. Org. Chem., 2019, 39(7): 2001-2008. |
[11] | Zhang Xiaoxiang, Lü Chang, Li Ping, Fu Bo, Yao Weiwei. Progress of the Research on the Lewis/Brønsted Acid-Catalyzed Nucleophilic Substitution of Propargyl Alcohols [J]. Chin. J. Org. Chem., 2016, 36(6): 1287-1298. |
[12] | Sun Zhidong, Zhu Yunlong, Huang Haiyang, Song Xianrong, Xiao Qiang. Studies on the Total Synthesis of iso-L-Cystidine [J]. Chin. J. Org. Chem., 2016, 36(11): 2729-2734. |
[13] | Zhang Xiaoxiang, Sun Xiaoping, Tan Jihuai, Fan Hui, Rao Weidong. Progress of Nucleophilic Substitution of Allylic Alcohols [J]. Chin. J. Org. Chem., 2015, 35(10): 2049-2058. |
[14] | Wang Kou, Yu Haofei, Ding Linfen, Hu Jianlin. CuBr2-Catalyzed Three-Component Coupling for Synthesis of Quinoline-2,4-dicarboxyl Derivatives [J]. Chin. J. Org. Chem., 2014, 34(7): 1437-1441. |
[15] | Ma Congming, Hou Kehui, Liu Zuliang, Yao Qizheng. A Convenient Preparation Method for 2-Amino-3,5-dinitro-6-chloropyridine and Its Derivatives [J]. Chin. J. Org. Chem., 2014, 34(3): 584-588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||