Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (3): 780-808.DOI: 10.6023/cjoc202311030 Previous Articles Next Articles
REVIEWS
收稿日期:
2023-11-27
修回日期:
2024-01-18
发布日期:
2024-04-02
基金资助:
Shuai Lva, Gangguo Zhua(), Jinzhong Yaob, Hongwei Zhoub()
Received:
2023-11-27
Revised:
2024-01-18
Published:
2024-04-02
Contact:
*E-mail: zhouhw@zju.edu.cn; gangguo@zjnu.cn
Supported by:
Share
Shuai Lv, Gangguo Zhu, Jinzhong Yao, Hongwei Zhou. Research Progress in Preparation of Carboxylic Acids by Electrochemical Mediated Oxidative Carboxylation and Reductive Carboxylation of Carbon Dioxide[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 780-808.
[1] |
Leech M. C.; Lam K. Acc. Chem. Res. 2020, 53, 121.
doi: 10.1021/acs.accounts.9b00586 |
[2] |
Haushalter R. W.; Phelan R. M.; Hoh K. M.; Su C.; Wang G.; Baidoo E. E. K.; Keasling J. D. J. Am. Chem. Soc. 2017, 139, 4615.
doi: 10.1021/jacs.6b11895 pmid: 28291347 |
[3] |
Kumar A.; Yadav P. K.; Singh S.; Singh A. Env. Pollut. Bioavail. 2023, 35, 2242701.
doi: 10.1080/26395940.2023.2242701 |
[4] |
Wang J.-K.; Zhou Q.; Wang J.-P.; Yang S.; Li G. L. Colloids Surf., A 2019, 569, 52.
doi: 10.1016/j.colsurfa.2019.02.050 |
[5] |
Moon Y.-S.; Kim H.-M.; Chun H. S.; Lee S.-E. Food Control 2018, 88, 207.
doi: 10.1016/j.foodcont.2018.01.017 |
[6] |
Zimmerman J. B.; Anastas P. T.; Erythropel H. C.; Leitner W. Science 2020, 367, 397.
doi: 10.1126/science.aay3060 pmid: 31974246 |
[7] |
Lodh J.; Paul S.; Sun H.; Song L. Y.; Schöfberger W.; Roy S. Front. Chem. 2023, 10.
|
[8] |
Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 |
[9] |
Kingston C.; Palkowitz M. D.; Takahira Y.; Vantourout J. C.; Peters B. K.; Kawamata Y.; Baran P. S. Acc. Chem. Res. 2020, 53, 72.
doi: 10.1021/acs.accounts.9b00539 |
[10] |
Leech M. C.; Lam K. Nat. Rev. Chem. 2022, 6, 275.
doi: 10.1038/s41570-022-00372-y |
[11] |
Elgrishi N.; Rountree K. J.; McCarthy B. D.; Rountree E. S.; Eisenhart T. T.; Dempsey J. L. J. Chem. Educ. 2018, 95, 197.
doi: 10.1021/acs.jchemed.7b00361 |
[12] |
Heard D. M.; Lennox A. J. J. Angew. Chem., Int. Ed. 2020, 59, 18866.
doi: 10.1002/anie.v59.43 |
[13] |
Little R. D. J. Org. Chem. 2020, 85, 13375.
doi: 10.1021/acs.joc.0c01408 |
[14] |
Schotten C.; Nicholls T. P.; Bourne R. A.; Kapur N.; Nguyen B. N.; Willans C. E. Green Chem. 2020, 22, 3358.
doi: 10.1039/D0GC01247E |
[15] |
Hatch C. E.; Chain W. J. ChemElectroChem 2023, 10, e202300140.
|
[16] |
Senboku H. Chem. Rec. 2021, 21, 2354.
doi: 10.1002/tcr.v21.9 |
[17] |
Wang S. Y.; Feng T.; Wang Y. W.; Qiu Y. A. Chem.-Asian J. 2022, 17, e202200543.
doi: 10.1002/asia.v17.17 |
[18] |
Liu X.-F.; Zhang K.; Tao L.; Lu X.-B.; Zhang W.-Z. Green Chem. Eng. 2022, 3, 125.
doi: 10.1016/j.gce.2021.12.001 |
[19] |
Jud W.; Salazar C. A.; Imbrogno J.; Verghese J.; Guinness S. M.; Desrosiers J.-N.; Kappe C. O.; Cantillo D. Org. Process Res. Dev. 2022, 26, 1486.
doi: 10.1021/acs.oprd.2c00064 |
[20] |
Zhou H.; Li Z.; Xu S.-M.; Lu L.; Xu M.; Ji K.; Ge R.; Yan Y.; Ma L.; Kong X.; Zheng L.; Duan H. Angew. Chem., Int. Ed. 2021, 60, 8976.
doi: 10.1002/anie.v60.16 |
[21] |
Liu S.; Dou S.; Meng J.; Liu Y.; Liu Y.; Yu H. Appl. Catal. B 2023, 331, 122709.
doi: 10.1016/j.apcatb.2023.122709 |
[22] |
Goloviznina K.; Salanne M. J. Phys. Chem. B 2023, 127, 742.
doi: 10.1021/acs.jpcb.2c07238 |
[23] |
Rafiee M.; Konz Z. M.; Graaf M. D.; Koolman H. F.; Stahl S. S. ACS Catal. 2018, 8, 6738.
doi: 10.1021/acscatal.8b01640 |
[24] |
Rafiee M.; Alherech M.; Karlen S. D.; Stahl S. S. J. Am. Chem. Soc. 2019, 141, 15266.
doi: 10.1021/jacs.9b07243 |
[25] |
Fisher T. J.; Dussault P. H. Tetrahedron 2017, 73, 4233.
doi: 10.1016/j.tet.2017.03.039 |
[26] |
Chan A. P. Y.; Sergeev A. G. Coord. Chem. Rev. 2020, 413, 213213.
doi: 10.1016/j.ccr.2020.213213 |
[27] |
Bäumer U. S.; Schäfer H. J. Electrochim. Acta 2003, 48, 489.
doi: 10.1016/S0013-4686(02)00715-6 |
[28] |
Bäumer U. S.; Schäfer H. J. J. Appl. Electrochem. 2005, 35, 1283.
doi: 10.1007/s10800-005-9060-4 |
[29] |
Nikl J.; Hofman K.; Mossazghi S.; Möller I. C.; Mondeshki D.; Weinelt F.; Baumann F.-E.; Waldvogel S. R. Nat. Commun. 2023, 14, 4565.
doi: 10.1038/s41467-023-40259-0 |
[30] |
Feng Q.; Wang Y.; Zheng B.; Huang S. Org. Lett. 2023, 25, 293.
doi: 10.1021/acs.orglett.2c04204 |
[31] |
Mena S.; Peral J.; Guirado G. Curr. Opin. Electrochem. 2023, 42, 101392.
|
[32] |
Yu Z.; Shi M. Chem. Commun. 2022, 58, 13539.
doi: 10.1039/D2CC05242C |
[33] |
Zhao Y.; Guo X.; Li S.; Fan Y.; Ji G.-C.; Jiang M.; Yang Y.; Jiang Y.-Y. Angew. Chem., Int. Ed. 2022, 61, e202213636.
doi: 10.1002/anie.v61.48 |
[34] |
Yao H.; Wang M.-Y.; Yue C.; Feng B.; Ji W.; Qian C.; Wang S.; Zhang S.; Ma X. Trans. Tianjin Univ. 2023, 29, 254.
doi: 10.1007/s12209-023-00361-2 |
[35] |
Senboku H. Chem. Rec. 2021, 21, 2354.
doi: 10.1002/tcr.v21.9 |
[36] |
Ran C.-K.; Liao L.-L.; Gao T.-Y.; Gui Y.-Y.; Yu D.-G. Curr. Opin. Green Sust. Chem. 2021, 32, 100525.
|
[37] |
Chantarojsiri T.; Soisuwan T.; Kongkiatkrai P. Chin. J. Catal. 2022, 43, 3046.
doi: 10.1016/S1872-2067(22)64180-9 |
[38] |
Senboku H.; Katayama A. Curr. Opin. Green Sust. Chem. 2017, 3, 50.
|
[39] |
Mao B.; Wei J.-S.; Shi M. Chem. Commun. 2022, 58, 9312.
doi: 10.1039/D2CC03380A |
[40] |
Huang W.; Lin J.; Deng F.; Zhong H. Asian J. Org. Chem. 2022, 11, e202200220.
doi: 10.1002/ajoc.v11.7 |
[41] |
Zhang Z.; Ye J.-H.; Ju T.; Liao L.-L.; Huang H.; Gui Y.-Y.; Zhou W.-J.; Yu D.-G. ACS Catal. 2020, 10, 10871.
doi: 10.1021/acscatal.0c03127 |
[42] |
Fan Z.; Zhang Z.; Xi C. ChemSusChem 2020, 13, 6201.
doi: 10.1002/cssc.v13.23 |
[43] |
Saini S.; Prajapati P. K.; Jain S. L. Catal. Rev. 2022, 64, 631.
doi: 10.1080/01614940.2020.1831757 |
[44] |
Wang S.; Du G.; Xi C. Org. Biomol. Chem. 2016, 14, 3666.
doi: 10.1039/C6OB00199H |
[45] |
Zhang L.; Hou Z. Curr. Opin. Green Sust. Chem. 2017, 3, 17.
|
[46] |
Tortajada A.; Juliá-Hernández F.; Börjesson M.; Moragas T.; Martin R. Angew. Chem., Int. Ed. 2018, 57, 15948.
doi: 10.1002/anie.v57.49 |
[47] |
Xie S.-L.; Gao X.-T.; Wu H.-H.; Zhou F.; Zhou J. Org. Lett. 2020, 22, 8424.
doi: 10.1021/acs.orglett.0c03051 |
[48] |
Zhao B.; Pan Z.; Pan J.; Deng H.; Bu X.; Ma M.; Xue F. Green Chem. 2023, 25, 3095.
doi: 10.1039/D2GC04636A |
[49] |
Mondal S.; Sarkar S.; Wang J. W.; Meanwell M. W. Green Chem. 2023, 25, 9075.
doi: 10.1039/D3GC03387B |
[50] |
Zhong J.-S.; Yang Z.-X.; Ding C.-L.; Huang Y.-F.; Zhao Y.; Yan H.; Ye K.-Y. J. Org. Chem. 2021, 86, 16162.
doi: 10.1021/acs.joc.1c01261 |
[51] |
Yang Z.-X.; Lai L.; Chen J.; Yan H.; Ye K.-Y.; Chen F.-E. Chin. Chem. Lett. 2023, 34, 107956.
doi: 10.1016/j.cclet.2022.107956 |
[52] |
Liao L.-L.; Wang Z.-H.; Cao K.-G.; Sun G.-Q.; Zhang W.; Ran C.-K.; Li Y.; Chen L.; Cao G.-M.; Yu D.-G. J. Am. Chem. Soc. 2022, 144, 2062.
doi: 10.1021/jacs.1c12071 |
[53] |
Zhang W.; Liao L.-L.; Li L.; Liu Y.; Dai L.-F.; Sun G.-Q.; Ran C.-K.; Ye J.-H.; Lan Y.; Yu D.-G. Angew. Chem., Int. Ed. 2023, 62, e202301892.
doi: 10.1002/anie.v62.23 |
[54] |
Zhang W.; Lin S. J. Am. Chem. Soc. 2020, 142, 20661.
doi: 10.1021/jacs.0c08532 pmid: 33231074 |
[55] |
You Y.; Kanna W.; Takano H.; Hayashi H.; Maeda S.; Mita T. J. Am. Chem. Soc. 2022, 144, 3685.
doi: 10.1021/jacs.1c13032 |
[56] |
Qin J.-H.; Xiong Z.-Q.; Cheng C.; Hu M.; Li J.-H. Org. Lett. 2023, 25, 9176.
doi: 10.1021/acs.orglett.3c03735 |
[57] |
Zhang K.; Ren B.-H.; Liu X.-F.; Wang L.-L.; Zhang M.; Ren W.-M.; Lu X.-B.; Zhang W.-Z. Angew. Chem., Int. Ed. 2022, 61, e202207660.
doi: 10.1002/anie.v61.38 |
[58] |
Wang Y.; Tang S.; Yang G.; Wang S.; Ma D.; Qiu Y. Angew. Chem., Int. Ed. 2022, 61, e202207746.
doi: 10.1002/anie.v61.38 |
[59] |
Yang G.; Wang Y.; Qiu Y. Chem. Eur. J. 2023, 29, e202300959.
doi: 10.1002/chem.v29.36 |
[60] |
Liu X.-F.; Zhang K.; Wang L.-L.; Wang H.; Huang J.; Zhang X.-T.; Lu X.-B.; Zhang W.-Z. J. Org. Chem. 2023, 88, 5212.
doi: 10.1021/acs.joc.2c01816 |
[61] |
Yan Y.; Li H.; Xie F.; Lu W.; Zhang Z.; Jing L.; Han P. Adv. Synth. Catal. 2023, 365, 3830.
doi: 10.1002/adsc.v365.22 |
[62] |
Alkayal A.; Tabas V.; Montanaro S.; Wright I. A.; Malkov A. V.; Buckley B. R. J. Am. Chem. Soc. 2020, 142, 1780.
doi: 10.1021/jacs.9b13305 pmid: 31960672 |
[63] |
Sheta A. M.; Mashaly M. A.; Said S. B.; Elmorsy S. S.; Malkov A. V.; Buckley B. R. Chem. Sci. 2020, 11, 9109.
doi: 10.1039/D0SC03148H |
[64] |
Sheta A. M.; Alkayal A.; Mashaly M. A.; Said S. B.; Elmorsy S. S.; Malkov A. V.; Buckley B. R. Angew. Chem., Int. Ed. 2021, 60, 21832.
doi: 10.1002/anie.v60.40 |
[65] |
Yang D.-T.; Zhu M.; Schiffer Z. J.; Williams K.; Song X.; Liu X.; Manthiram K. ACS Catal. 2019, 9, 4699.
doi: 10.1021/acscatal.9b00818 |
[66] |
Corbin N.; Yang D.-T.; Lazouski N.; Steinberg K.; Manthiram K. Chem. Sci. 2021, 12, 12365.
doi: 10.1039/D1SC02413B |
[67] |
Gao X.-T.; Zhang Z.; Wang X.; Tian J.-S.; Xie S.-L.; Zhou F.; Zhou J. Chem. Sci. 2020, 11, 10414.
doi: 10.1039/D0SC04091F |
[68] |
Seidler J.; Roth A.; Vieira L.; Waldvogel S. R. ACS Sustain. Chem. Eng. 2023, 11, 390.
doi: 10.1021/acssuschemeng.2c06046 |
[69] |
Zhang K.; Liu X.-F.; Zhang W.-Z.; Ren W.-M.; Lu X.-B. Org. Lett. 2022, 24, 3565.
doi: 10.1021/acs.orglett.2c01267 pmid: 35532347 |
[70] |
Zhao Z.; Liu Y.; Wang S.; Tang S.; Ma D.; Zhu Z.; Guo C.; Qiu Y. Angew. Chem., Int. Ed. 2023, 62, e202214710.
doi: 10.1002/anie.v62.3 |
[71] |
Sun G.-Q.; Yu P.; Zhang W.; Zhang W.; Wang Y.; Liao L.-L.; Zhang Z.; Li L.; Lu Z.; Yu D.-G.; Lin S. Nature 2023, 615, 67.
doi: 10.1038/s41586-022-05667-0 |
[72] |
Zhang X.; Li Z. H.; Chen H. S.; Shen C. R.; Wu H. H.; Dong K. W. ChemSusChem 2023, 16, e202300807.
doi: 10.1002/cssc.v16.19 |
[73] |
Bazzi S.; Le Duc G.; Schulz E.; Gosmini C.; Mellah M. Org. Biomol. Chem. 2019, 17, 8546.
doi: 10.1039/C9OB01752F |
[74] |
Bazzi S.; Schulz E.; Mellah M. Org. Lett. 2019, 21, 10033.
doi: 10.1021/acs.orglett.9b03927 |
[75] |
Bazzi S.; Hu L.; Schulz E.; Mellah M. Organometallics 2023, 42, 1425-1431.
doi: 10.1021/acs.organomet.3c00076 |
[76] |
Jiao K.-J.; Li Z.-M.; Xu X.-T.; Zhang L.-P.; Li Y.-Q.; Zhang K.; Mei T.-S. Org. Chem. Front. 2018, 5, 2244.
doi: 10.1039/C8QO00507A |
[77] |
Ang N. W. J.; Oliveira J. C. A.; Ackermann L. Angew. Chem., Int. Ed. 2020, 59, 12842.
doi: 10.1002/anie.v59.31 |
[78] |
Wu L.-X.; Deng F.-J.; Wu L.; Wang H.; Chen T.-J.; Guan Y.-B.; Lu J.-X. New J. Chem. 2021, 45, 13137.
doi: 10.1039/D1NJ02006D |
[79] |
Sun G.-Q.; Zhang W.; Liao L.-L.; Li L.; Nie Z.-H.; Wu J.-G.; Zhang Z.; Yu D.-G. Nat. Commun. 2021, 12, 7086.
doi: 10.1038/s41467-021-27437-8 |
[80] |
Wang Y. W.; Zhao Z. W.; Pan D.; Wang S. Y.; Jia K. P.; Ma D. K.; Yang G. Q.; Xue X. S.; Qiu Y. A. Angew. Chem., Int. Ed. 2022, 61, e202210201.
doi: 10.1002/anie.v61.41 |
[81] |
Rawat V. K.; Hayashi H.; Katsuyama H.; Mangaonkar S. R.; Mita T. Org. Lett. 2023, 25, 4231
doi: 10.1021/acs.orglett.3c01033 |
[1] | Aman Hasil, Rui Chang, Juntao Ye. Recent Advances on C—H Functionalization via Oxidative Electrophotocatalysis [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 728-747. |
[2] | Xue Sun, Tingtao Yan, Kelu Yan, Jianjing Yang, Jiangwei Wen. Electrochemical Enabled Phosphorylation of α-Diazoester to Access Phosphinic Hydrazone [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 1013-1020. |
[3] | Xinyue Fang, Yawen Huang, Xinwei Hu, Zhixiong Ruan. Recent Progress in Electrochemical Modification of Amino Acids and Peptides [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 903-926. |
[4] | Mengfan Li, Xu Cheng. Chemoselective Electro-oxidation of Allyl Arene to Ester [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 1005-1012. |
[5] | Jiwei Wu, Jun He, Jingjing Wang, Lixia Li, Caiyu Xu, Jie Zhou, Zirong Li, Huajian Xu. Electrochemical Oxidation Decarboxylative Cyclization of α-Keto Acid with o-Aminobenzylamine [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 972-980. |
[6] | Zile Zhu, Pengfei Li, Youai Qiu. Recent Advance in Electrochemical C(sp2)—H Amination of Arenes [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 871-891. |
[7] | Hongbing Chen, Sijia Yang, Zhipeng Ye, Kai Chen, Haoyue Xiang, Hua Yang. Electrocatalytic Reduction of Quinolines and Ketones by Using Lewis Base-Ligated Borane as a Hydrogen Donor [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 966-971. |
[8] | Jian Huang, Wenzhen Zhang. Advances in Electrochemical Cathodic Reductive Reactions Involving Carbon-Nitrogen Bonds [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 825-839. |
[9] | Yuanhang Chen, Jinyu He, Bo Zhang, Yanzhao Wang, Lingxuan Kong, Weifeng Qian, Na'na Wang, Wenxi Duan, Yanyan Ouyang, Cuiju Zhu, Hao Xu. Asymmetric Electrochemical Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 748-779. |
[10] | Lan Zhou, Hong He, De-Qiao Yang, Zhong-Wei Hou, Lei Wang. Electrochemical Trifluoromethylation/Spirocyclization of N-Benzylacrylamides to Construct Trifluoromethylated 2-Azaspiro[4.5]decanes [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 981-988. |
[11] | Zhang-Jian Li, Zhen-Hua Wang, Jian-Feng Guo, Ping Fang, Cong Ma, Run-Hua Liu, Tian-Sheng Mei. Electrochemistry-Enabled 2,2,6,6-Tetramethylpiperidoxyl (TEMPO)-Mediated Oxidative Dehydrogenation Povarov/Tandem Reactions of Glycine Derivatives [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 940-950. |
[12] | Junyong Wang, Na Li, Jie Ke, Chuan He. Recent Advances in Electrochemical Silylation [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 927-939. |
[13] | Suyan Tao, Zixin Xiang, Junjie Bai, Xiao Wan, Xiaobing Wan. Amide Hydrolysis Reaction Using tert-Butyl Nitrite [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 550-560. |
[14] | Xu Liao, Zeyu Wang, Wufei Tang, Jinqing Lin. Progress in Porous Organic Polymer for Chemical Fixation of Carnbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2699-2710. |
[15] | Zijie Song, Jun Liu, Ying Bai, Jiayun Li, Jiajian Peng. Progress in Catalysis Transformation of Carbon Dioxide through Hydrosilylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2068-2080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||