Chinese Journal of Organic Chemistry ›› 2020, Vol. 40 ›› Issue (7): 1912-1925.DOI: 10.6023/cjoc201912044 Previous Articles Next Articles
徐鑫明a, 杨翰林a, 李文忠a
收稿日期:
2019-12-31
修回日期:
2020-03-16
发布日期:
2020-04-09
通讯作者:
徐鑫明
E-mail:xin_mingxu@163.com
基金资助:
Xu Xinminga, Yang Hanlina, Li Wenzhonga
Received:
2019-12-31
Revised:
2020-03-16
Published:
2020-04-09
Supported by:
Share
Xu Xinming, Yang Hanlin, Li Wenzhong. Transition Metal-Free Direct C-H Bond Sulfenylation of Alkenes and Arenes[J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1912-1925.
[1] (a) Kvasnika, M.; Urban, M.; Dickinson, N. J.; Sarek, J. Nat. Prod. Rep. 2015, 32, 1303. (b) Meng, D.; Chen, W.; Zhao, W. J. Nat. Prod. 2007, 70, 824. (c) Cremlyn, R. J. An Introduction to Organosulfur Chemistry, Wiley, New York, 1996. (d) Iino, H.; Usui, T.; Hanna, J.-I. Nat. Commun. 2015, 5, 6828. (e) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 11, 1596. [2] (a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200. (b) Kim, S.; Dahal, N.; Kesharwani, T. Tetrahedron Lett. 2013, 54, 4373. [3] (a) Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486. (b) Wu, D.; Pisula, W.; Haberecht, M. C.; Feng, X.; Müllen, K. Org. Lett. 2009, 11, 5686. (c) Yang, S. M.; Shie, J. J.; Fang, J. M.; Nandy, S. K.; Chang, Y. Y. J. Org. Chem. 2002, 67, 5208. [4] (a) Carretero, J. C. Chem. Commun. 2011, 47, 2207. (b) Pellisier, H. RSC Catalysis Series 2, Royal Society of Chemistry, Cambridge, 2009. [5] (a) Kausar, A.; Zulfiqar, S.; Sarwar, M. I. Pol. Rev. 2014, 54, 185. (b) Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Rev. Chem. Eng. 2013, 29, 471. (c) Spassky, N. Phosphorus Sulfur Silicon Relat. Elem. 1993, 74, 71. [6] (a) Hartwig, J. F. Nature 2008, 455, 314. (b) Lu, Q.; Zhang, J.; Wei, F. L.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156. (c) Lu, Q.-Q.; Zhang, J.; Zhao, G.-L.; Qi, Y.; Wang, H.-M.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481. [7] (a) Beletskaya, I. P.; Ananikov, V. P. Eur. J. Org. Chem. 2007, 2007, 3431. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (c) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291. [8] (a) Zhang, S.-N.; Yang, S.-H.; Huang, L.-H.; Zhao, B.-L.; Cheng, K.; Qi, C.-Z. Chin. J. Org. Chem. 2015, 35, 2259(in Chinese). (张诗浓, 杨胜虎, 黄乐浩, 赵保丽, 程凯, 齐陈泽, 有机化学, 2015, 35, 2259.) (b) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. J. Org. Chem. 2019, 39, 3338(in Chinese). (徐鑫明, 陈德茂, 王祖利, 有机化学, 2019, 39, 3338.) (c) Dalpozzo, R. Org. Chem. Front. 2017, 4, 2063. (d) Freckleton, M.; Baeza, A.; Benavent, L.; Chinchilla, R. Asian J. Org. Chem. 2018, 7, 1006. (e) Sun, J.; Qiu, J.-K.; Zhu, Y.-L.; Guo, C.; Hao, W.-J.; Jiang, B.; Tu, S.- J. J. Org. Chem. 2015, 80, 8217. (f) Sun, J.; Qiu, J.-K.; Jiang, B.; Hao, W.-J.; Guo, C.; Tu, S.-J. J. Org. Chem. 2016, 81, 3321. [9] (a) Liu, Y.-Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667(in Chinese). (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667.) (b) Dong, D.-Q.; Hao, S.-H.; Yang, D.-S.; Li, L.-X.; Wang, Z.-L. Eur. J. Org. Chem. 2017, 2017, 6576. (c) Xu, X.-M.; Li, J.; Wang, Z.-L. Chin. J. Org. Chem. 2020, 40, 886(in Chinese). (徐鑫明, 李家柱, 王祖利, 有机化学, 2020, 40, 886.) (d) Jin, C.-A.; Xu, Q.; Feng, G.-F.; Jin, Y.; Zhang, L.-Y. Chin. J. Org. Chem. 2018, 38, 775(in Chinese). (金城安, 徐庆, 冯高峰, 金阳, 张连阳, 有机化学, 2018, 38, 775.) (e) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. Chem. Lett. 2020, 31, 49. [10] (a) Nakazawa, T.; Xu, J.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R. E. P.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. J. Nat. Prod. 2007, 70, 439. (b) Nielsen, S. F.; Olsen, G. M.; Liljefors, T.; Peters, D. J. Med. Chem. 2000, 43, 2217. (c) Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 13900. [11] (a) Varun, B. V.; Gadde, K.; Prabhu, K. R. Org. Lett. 2015, 17, 2944. (b) Cao, H.; Yuan, J.; Liu, C.; Hu, X.-Q.; Lei, A.-W. RSC Adv. 2015, 5, 41493. (c) Siddaraju, Y.; Prabhu, K. R. Org. Lett. 2016, 18, 6090. (d) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2018, 83, 2986. (e) Wang, D.; Liu, Z.; Wang, Z.; Ma, X.; Yu, P. Green Chem. 2019, 21, 157. (f) Chen, Q.; Yu, G.; Wang, X.; Ou, Y.; Huo, Y. Green Chem. 2019, 21, 798. [12] (a) Ohkado, R.; Ishikawa, T.; Iida, H. Green Chem. 2018, 20, 984. (b) Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L.-Y.; Wu, Y.; Chen, D.; Fan, X.-L. RSC Adv. 2017, 7, 37739. (c) Zhang, H.; Bao, X.; Song, Y.; Qu, J.; Wang, B. Tetrahedron 2015, 71, 8885. (d) Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371. [13] (a) Hiebel, M.; Berteina-Raboin, S. Green Chem. 2015, 17, 937. (b) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838. (c) Iida, H.; Demizu, R.; Ohkado, R. J. Org. Chem. 2018, 83, 12291. (d) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49. (e) Rahaman, R.; Das, S.; Barman, P. Green Chem. 2018, 20, 141. [14] Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068. [15] Wang, H.-H.; Shi, T.; Gao, W.-W.; Wang, Y.-Q.; Li, J.-F.; Jiang, Y.; Hou, Y.-S.; Chen, C.; Peng, X.; Wang, Z. Chem. Asian J. 2017, 12, 2675. [16] Xiao, F.-H.; Tian, J.-X.; Xing, Q.-Y.; Huang, H.-W.; Deng, G.-J.; Liu, Y.-J. ChemistrySelect 2017, 2, 428. [17] (a) Shanmugapriya, J.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. Eur. J. Org. Chem. 2016, 2016, 1963. (b) Huang, W.; Yang, G.-F. Bioorg. Med. Chem. 2006, 14, 8280. [18] Kong, D.-L.; Huang, T.; Liang, M.; Wu, M.-S.; Lin, Q. Org. Biomol. Chem. 2019, 17, 830. [19] Fan, W.; Chen, K.-Y.; Chen, Q.-P.; Li, G.-G.; Jiang, B. Org. Biomol. Chem. 2017, 15, 6493. [20] (a) Liu, Y.; Badsara, S. S.; Liu, Y.; Lee, C. RSC Adv. 2015, 5, 44299. (b) Devi, N.; Rahaman, R.; Sarma, K.; Khan, T.; Barman, P. Eur. J. Org. Chem. 2017, 2017, 1520. (c) Rafique, J.; Saba, S.; Rosrio, A. R.; Braga, A. L. Chem. Eur. J. 2016, 22, 79. (d) Ji, X.-M.; Zhou, S.-J.; Chen, F.; Zhang, X.-G.; Tang, R.-Y. Synthesis 2015, 47, 659. [21] Rodrigues, J.; Saba, S.; Joussef, A. C.; Rafique, J.; Braga, A. L. Asian J. Org. Chem. 2018, 5, 1819. [22] Hazarika, S.; Gogoi, P.; Barman, P. RSC Adv. 2015, 5, 25765. [23] Kawashima, H.; Yanagi, T.; Wu, C.-C.; Nogi, K.; Yorimitsu, H. Org. Lett. 2017, 19, 4552. [24] Hostier, T.; Ferey, V.; Ricci, G.; Pardo, D. G.; Cossy, J. Org. Lett. 2015, 17, 3898. [25] Nalbandian, C. J.; Brown, Z. E.; Alvarez, E.; Gustafson, J. L. Org. Lett. 2018, 20, 3211. [26] Böhm, M. J.; Golz, C.; Rüter, I.; Alcarazo, M. Chem.-Eur. J. 2018, 24, 15026. [27] (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432. (d) Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941. [28] (a) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014, 2415. (b) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227. (c) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731. (d) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445. [29] Jereb, M.; Gosak, K. Org. Biomol. Chem. 2015, 13, 3103. [30] Horvat, M.; Jereb, M.; Iskra, J. Eur. J. Org. Chem. 2018, 2018, 3837. [31] Bonazaba Milandou, L. J. C.; Carreyre, H.; Alazet, S.; Greco, G.; Martin-Mingot, A.; Ouamba, J.-M.; Bouazza, F.; Billard, T.; Thibaudeau, S. Angew. Chem., Int. Ed. 2017, 56, 169. [32] Liu, S.; Zeng, X.; Xu, B. Asian J. Org. Chem. 2019, 8, 1372. [33] Lu, S.; Chen, W.; Shen, Q. Chin. Chem. Lett. 2019, 30, 2279. [34] Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486. [35] Wang, D.; Zhang, R.; Lin, S.; Yan, Z.; Guo, S. M. RSC Adv. 2015, 5, 108030. [36] Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. Green Chem. 2016, 18, 1538. [37] Xu, Z.; Lu, G.; Cai, C. Org. Biomol. Chem. 2017, 15, 2804. [38] Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. Adv. Synth. Catal. 2016, 358, 4100. [39] Yan, Q.; Jiang, L.; Yi, W.-B.; Liu, Q.; Zhang, W. Adv. Synth. Catal. 2017, 359, 2471. [40] Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 934. [41] (a) Zhao, X.; Wei, A.; Yang, B.; Li, T.; Li, Q.; Qiu, D.; Lu, K. J. Org. Chem. 2017, 82, 9175. (b) Zhao, X.; Zheng, X.; Tian, M.; Sheng, J.; Tong, Y.; Lu, K. Tetrahedron 2017, 73, 7233. [42] Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467. [43] Liu, J.; Zhao, X.; Jiang, L.; Yi, W.-B. Adv. Synth. Catal. 2018, 360, 4012. [44] Fernandez-Salas, J.; Pulis, A.; Procter, D. J. Chem. Commun. 2016, 52, 12364. [45] Chen, D.; Feng, Q.; Yang, Y.; Cai, X.; Wang, F.; Huang, S. Chem. Sci. 2017, 8, 1601. [46] (a) Yang, X.; Yan, R. Org. Biomol. Chem. 2017, 15, 3571. (b) Wang, T.; Yang, F.; Tian, S. Adv. Synth. Catal. 2015, 357, 928. (c) Rahaman, R.; Devi, N.; Sarmaa, K.; Barman, P. RSC Adv. 2016, 6, 10873. (d) Bagdi, A. K.; Mitra, S.; Ghosh, M.; Hajra, A. Org. Biomol. Chem. 2015, 13, 3314. (e) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015, 80, 4697. [47] Pang, X.; Xiang, L. K.; Yang, X. D.; Yan, R. L. Adv. Synth. Catal. 2016, 358, 321. [48] Zhao, X.; Li, T. J.; Zhang, L. P.; Lu, K. Org. Biomol. Chem. 2016, 14, 1131. [49] Zhao, X.; Deng, Z. J.; Wei, A. Q.; Li, B. Y.; Lu, K. Org. Biomol. Chem. 2016, 14, 7304. [50] (a) Wang, D. Y.; Guo, S. M.; Zhang, R. X.; Lin, S.; Yan, Z. H. RSC Adv. 2016, 6, 54377. (b) Wang, D. Y.; Zhang, R. X.; Lin, S.; Deng, R. H.; Yan, Z. H. Chin. J. Org. Chem. 2016, 36, 2757(in Chinese). (王丁意, 张荣兴, 林森, 邓瑞红, 严兆华, 有机化学, 2016, 36, 2757.) [51] Li, J.; Zhu, D.; Lv, L.; Li, C.-J. Chem. Sci. 2018, 9, 5781. [52] Liu, P.; Liu, W.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 14315. [53] (a) Wadman, M. Nature 2006, 440, 277 (b) Williams, R. B.; Norris, A.; Slebodnick, C.; Merola, J.; Miller, J. S.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. J. Nat. Prod. 2005, 68, 1371. (c) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693. (d) Lin, Y.-M.; Lu, G.-P.; Wang, R.-K.; Yi, W.-B. Org. Lett. 2016, 18, 6424. [54] Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Niu, B.; Ding, Y. RSC Adv. 2015, 5, 59861. [55] Ding, Y.; Zhao, W.; Li, Y.; Xie, P.; Wu, W.; Zhou, A.; Huang, Y.; Liu, Y. Org. Biomol. Chem. 2016, 14, 1428. [56] Guo, T. Synth. Commun. 2017, 47, 2053. [57] Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.-H.; Ge, H.-B.; Zhang, M.; Ding, Y.; Zheng, L. J. Org. Chem. 2015, 80, 9167. [58] Liu, W.-J.; Wang, S.-H.; Cai, Z.-H.; Li, Z.-Y.; Liu, J.-W.; Wang, A.-D. Synlett 2018, 29, 116. [59] Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. Org. Lett. 2016, 18, 584. [60] Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371. [61] Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084. [62] Xiao, F.-H.; Wang, D.; Yuan, S.; Huang, H.; Deng, G.-J. RSC Adv. 2018, 8, 23319. [63] Fu, H.; Zhao, B.-T.; Zhu, W.-M. Tetrahedron Letters 2019, 60, 124. [64] Yang, F.-L.; Gui, Y.; Yu, B.-K.; Jin, Y.-X.; Tian, S.-K. Adv. Synth. Catal. 2016, 358, 3368. [65] (a) Bao, Y.; Yang, X.-Q.; Zhou, Q.-F.; Yang, F. L.; Org. Lett. 2018, 20, 1966. (b) Bao, Y.; Zhong, L.-Y.; Hou, Q.; Zhou, Q.-F.; Yang, F.-L. Chin. J. Chem. 2018, 36, 1063. [66] Deng, L.-L.; Liu, Y.-Y. ACS Omega 2018, 3, 11890. [67] Guo, T.; Wei, X.-N. Synlett 2017, 28, 2499. [68] Yang, Z.; Yan, Y.; Li, A.; Liao, J.; Zhang, L.; Yang, T.; Zhou, C. New J. Chem. 2018, 42, 14738. [69] Dong, Y.-T.; Jin, Q.; Zhou, L.; Chen, J. Org. Lett. 2016, 18, 5708. [70] Bu, M.; Lu, G.; Cai, C. Org. Chem. Front. 2017, 4, 266. [71] Li, G.; Zhang, G.; Deng, X.; Qu, K.; Wang, H.; Wei, W.; Yang, D. Org. Biomol. Chem. 2018, 16, 8015. |
[1] | Huanqing Li, Zhaohua Chen, Zujia Chen, Qiwen Qiu, Youcai Zhang, Sihong Chen, Zhaoyang Wang. Research Progress in Mercury Ion Fluorescence Probes Based on Organic Small Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3067-3077. |
[2] | Cunjing Miao, Jiaqi Yao. Recent Advances in the Transformation Reactions of Aromatic Nitriles via C—CN Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1341-1364. |
[3] | Yuxing Tong, Ziwei Wang, Ben Liu, Yaowei Xu, Song Gao, Xiangbing Tang, Xinghua Zhang. Recent Advances in Synthesis of 3-Sulfenylated Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1310-1324. |
[4] | Tingting Liu, Yucai Hu, An Shen. Mechanism of Carbon-Carbon Coupling Reactions Catalyzed by Imine-Ligand-Assisted N-Heterocyclic Carbene Palladium Complexes [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 622-628. |
[5] | Yueling Liu, Xinxin Zhong, Ganbing Zhang. Density Functional Theory Study for Exploring the Mechanisms of the [3+2] Cycloaddition Reactions between 1-R-3-Phenylpropylidenecyclopropane (R=Me/H) and Furfural Catalyzed by Pd(0) [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 660-667. |
[6] | Zexin Huang, Yuqiang Yin, Fengcheng Jia, Anxin Wu. Research Progress on C2—C3 Bond Cleavage of Indole and Its Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2028-2044. |
[7] | Yubing Shi, Wenji Bai, Weihua Mu, Jiangping Li, Jiawei Yu, Bing Lian. Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1346-1374. |
[8] | Youcai Zhu, Xinxin Ding, Li Sun, Zhen Liu. Advances in the Production of Acrylic Acid and Its Derivatives by CO2/C2H4 Coupling [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 965-977. |
[9] | Zheng Li, Yingchun Gu, Dazhen Xu, Xuening Fei, Lei Zhang. Density Functional Theory Study on the Mechanism of Organophosphine-Catalyzed [4+2] Cycloaddition Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 830-837. |
[10] | Haozhi Wu, Tian Luo, Jianwen Jiang, Jieping Wan. KI-Catalyzed Selective C(5)-Sulfenylation and C(5),C(7)-Disulfenylation of Unprotected 8-Aminoquinolines and the Indole C(2),C(3)-Disulfenylation [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3721-3729. |
[11] | Yijiao Feng, Jing He, Yueting Wei, Ting Tang, Chuntian Li, Ping Liu. One-Pot Two-Step Strategy for Efficient Synthesis of 3-Aryl-4-(arylthio)-1H-pyrazol-5-amines Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 226-234. |
[12] | Man Xu, Yuanzhi Xia. Mechanistic Understanding of Rh(III)-Catalyzed Redox-Neutral C—H Activation/Annulation Reactions of N-Phenoxyacetamides and Methyleneoxetanones [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3272-3278. |
[13] | Kai Yang, Meijuan Liu, Yu'na Zhang, Jiaqi Zhan, Luxuan Deng, Xuejie Zheng, Yongjun Zhou, Zhaoyang Wang. Progress in the Synthesis of Benzoheterocycles from 2-Halobenzamides [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2175-2187. |
[14] | Fengcheng Jia, Na Luo, Cheng Xu, Anxin Wu. Recent Advances in the Synthesis of Benzoheterocyclic Compounds Involving Isatins [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1527-1542. |
[15] | Liang Liu, Wenbo Liu, Dong-Mei Cui, Ming Zeng. Progress in the Synthesis of Aroyl Compounds [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4289-4305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||