Chinese Journal of Organic Chemistry ›› 2020, Vol. 40 ›› Issue (7): 1860-1873.DOI: 10.6023/cjoc202002038 Previous Articles Next Articles
董晓娟, 金伟伟, 刘晨江
收稿日期:
2020-02-26
修回日期:
2020-04-10
发布日期:
2020-04-23
通讯作者:
金伟伟, 刘晨江
E-mail:wwjin0722@163.com;pxylcj@126.com
基金资助:
Dong Xiaojuan, Jin Weiwei, Liu Chenjiang
Received:
2020-02-26
Revised:
2020-04-10
Published:
2020-04-23
Supported by:
Share
Dong Xiaojuan, Jin Weiwei, Liu Chenjiang. Recent Advances in Transition-Metal Catalyzed Defunctionalization Reaction[J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1860-1873.
[1] Modak, A.; Maiti, D. Org. Biomol. Chem. 2016, 14, 21. [2] Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E. M.; Bals, S.; Kirschhock, C. E. A.; De Vos, D. E. ACS Catal. 2016, 6, 7303. [3] Ferrini, P.; Chesi, C.; Parkin, N.; Rinaldi, R. Faraday Discuss. 2017, 202, 403. [4] Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864. [5] Matsubara, S.; Yokota, Y.; Oshima, K. Org. Lett. 2004, 6, 2071. [6] Dickstein, J. S.; Mulrooney, C. A.; O'Brien, E. M.; Morgan, B. J.; Kozlowski, M. C. Org. Lett. 2007, 9, 2441. [7] Ladwein, K. I.; Jung, M. Angew. Chem., Int. Ed. 2011, 50, 1214 [8] Modak, A.; Naveen, T.; Maiti, D. Chem. Commun. 2013, 49, 252. [9] Modak, A.; Deb, A.; Patra, T.; Rana, S.; Maity, S.; Maiti, D. Chem. Commun. 2012, 48, 4253. [10] Akanksha; Maiti, D. Green Chem. 2012, 14, 2314. [11] (a) Huang, Y.-B.; Yang, Z.; Chen, M.-Y.; Dai, J.-J.; Guo, Q.-X.; Fu, Y. ChemSusChem 2013, 6, 1348. (b) Chatterjee, M.; Ishizaka, T.; Kawanami, H. Green Chem. 2018, 20, 2345. [12] Li, W.-H.; Li, C.-Y.; Li, Y.; Tang, H.-T.; Wang, H.-S.; Pan, Y.-M.; Ding, Y.-J. Chem. Commun. 2018, 54, 8446. [13] Ogiwara, Y.; Sakurai, Y.; Hattori, H.; Sakai, N. Org. Lett. 2018, 20, 4204. [14] Dawes, G. J. S.; Scott, E. L.; Le Nôtre, J.; Sanders, J. P. M.; Bitter, J. H. Green Chem. 2015, 17, 3231. [15] Si, Y.-G.; Gardner, M. P.; Tarazi, F. I.; Baldessarini, R. J.; Neumeyer, J. L. J. Med. Chem. 2008, 51, 983. [16] Cao, D.; Zeng, H.; Li, C.-J. ACS Catal. 2018, 8, 8873. [17] Sawadjoon, S.; Lundstedt, A.; Samec, J. S. M. ACS Catal. 2013, 3, 635. [18] Ritter, K. Synthesis 1993, 735. [19] Pan, Y.; Holmes, C. P. Org. Lett. 2001, 3, 2769. [20] Sajiki, H.; Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Hirota, K. Org. Lett. 2006, 8, 987. [21] Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem.-Eur. J. 2007, 13, 1432. [22] Hupp, C. D.; Neumeyer, J. L. Tetrahedron Lett. 2010, 51, 2359. [23] Chow, W. K.; So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Chem. Front. 2014, 1, 464. [24] Graham, T. H.; Liu, W.; Shen, D.-M. Org. Lett. 2011, 13, 6232. [25] Matsumura, T.; Niwa, T.; Nakada, M. Tetrahedron Lett. 2012, 53, 4313. [26] Matsumura, T.; Nakada, M. Tetrahedron Lett. 2014, 55, 1412. [27] Ishihara, S.; Ido, A.; Monguchi, Y.; Nagase, H.; Sajiki, H. J. Hazard. Mater. 2012, 229, 15. [28] Chelucci, G.; Baldino, S.; Ruiu, A. J. Org. Chem. 2012, 77, 9921. [29] Kashihara, M.; Yadav, M. R.; Nakao, Y. Org. Lett. 2018, 20, 1655. [30] Deng, G.; Chen, J.; Sun, W.; Bian, K.; Jiang, Y.; Loh, T.-P. Adv. Synth. Catal. 2018, 360, 3900. [31] Patra, T.; Agasti, S.; Akanksha; Maiti, D. Chem. Commun. 2013, 49, 69. [32] Patra, T.; Agasti, S.; Modak, A.; Maiti, D. Chem. Commun. 2013, 49, 8362. [33] Enthaler, S.; Weidauer, M.; Irran, E.; Epping, J. D.; Kretschmer, R.; Someya, C. I. J. Organomet. Chem. 2013, 745, 262. [34] Crawford, J. M.; Shelton, K. E.; Reeves, E. K.; Sadarananda, B. K.; Kalyani, D. Org. Chem. Front. 2015, 2, 726. [35] (a) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2017, 139, 1416. (b) Somerville, R. J.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 6708. [36] Ding, K.; Shi, X.; Alotaibi, R.; Paudel, K.; Reinheimer, E. W.; Weatherly, J. J. Org. Chem. 2017, 82, 4924. [37] Yu, R.; Chen, X.; Martin, S. F.; Wang, Z. Org. Lett. 2017, 19, 1808. [38] Yue, H.; Guo, L.; Lee, S.-C.; Liu, X.; Rueping, M. Angew. Chem., Int. Ed. 2017, 56, 3972. [39] Dey, A.; Sasmal, S.; Seth, K.; Lahiri, G. K.; Maiti, D. ACS Catal. 2017, 7, 433. [40] Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586. [41] Herrmann, J. M.; König, B. Eur. J. Org. Chem. 2013, 2013, 7017. [42] Lipshutz, B. H.; Frieman, B. A.; Butler, T.; Kogan, V. Angew. Chem., Int. Ed. 2006, 45, 800. [43] Álvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 132, 17352. [44] Tobisu, M.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Chem. Commun. 2011, 47, 2946. [45] Cornella, J.; Gómez-Bengoa, E.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1997. [46] Tobisu, M.; Morioka, T.; Ohtsuki, A.; Chatani, N. Chem. Sci. 2015, 6, 3410. [47] Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439. [48] Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 20226. [49] Li, J.; Wang, Z.-X. Chem. Commun. 2018, 54, 2138. [50] Cao, Z.-C.; Shi, Z.-J. J. Am. Chem. Soc. 2017, 139, 6546. [51] Lipshutz, B. H.; Tomioka, T.; Sato, K. Synlett 2001, 970. [52] Barbero, N.; Martin, R. Org. Lett. 2012, 14, 796. [53] Tobisu, M.; Nakamura, K.; Chatani, N. J. Am. Chem. Soc. 2014, 136. 5587. [54] Kreis, M.; Palmelund, A.; Bunch, L.; Madsen, R. Adv. Synth. Catal. 2006, 348, 2148. [55] Fristrup, P.; Kreis, M.; Palmelund, A.; Norrby, P.-O.; Madsen, R. J. Am. Chem. Soc. 2008, 130, 5206. [56] Gutmann, B.; Elsner, P.; Glasnov, T.; Roberge, D. M.; Kappe, C. O. Angew. Chem., Int. Ed. 2014, 53, 11557. [57] Monrad, R. N.; Madsen, R. J. Org. Chem. 2007, 72, 9782. [58] Bröehmer, M. C.; Volz, N.; Bräese, S. Synlett 2009, 1383. [59] Sun, Z.-M.; Zhang, J.; Manan, R. S.; Zhao, P. J. Am. Chem. Soc. 2010, 132, 6935. [60] Whittaker, R. E.; Dong, G. Org. Lett. 2015, 17, 5504. [61] Tobisu, M.; Nakamura, R.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 3174. [62] Hooper, J. F.; Young, R. D.; Weller, A. S.; Willis, M. C. Chem.-Eur. J. 2013, 19, 3125. [63] Vandekerkhove, A.; Claes, L.; De Schouwer, F.; Van Goethem, C.; Vankelecom, I. F. J.; Lagrain, B.; De Vos, D. E. ACS Sustainable Chem. Eng. 2018, 6, 9218. [64] Chatani, N.; Tatamidani, H.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 4849. [65] Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615. [66] Mazziotta, A.; Madsen, R. Eur. J. Org. Chem. 2017, 2017, 5417. [67] Nishibayashi, Y.; Shinoda, A.; Miyake, Y.; Matsuzawa, H.; Sato, M. Angew. Chem., Int. Ed. 2006, 45, 4835. [68] Dai, X.-J.; Li, C.-J. J. Am. Chem. Soc. 2016, 138, 5433. [69] Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756. [70] You, T.; Wang, Z.; Chen, J.; Xia, Y. J. Org. Chem. 2017, 82, 1340. [71] (a) Dang, H.; Cox, N.; Lalic, G. Angew. Chem., Int. Ed. 2014, 53, 752. (b) Lei, L.; Li, C.; Mo, D. Chin. J. Org. Chem. 2019, 39, 2989(in Chinese). (雷禄, 李承璟, 莫冬亮, 有机化学, 2019, 39, 2989.) [72] Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I. Chem. Commun. 2017, 53, 5584. [73] Gooßen, L. J.; Thiel, W. R.; Rodríguez, N.; Linder, C.; Melzer, B. Adv. Synth. Catal. 2007, 349, 2241. [74] Goossen, L. J.; Manjolinho, F.; Khan, B. A.; Rodríguez, N. J. Org. Chem. 2009, 74, 2620. [75] Cahiez, G.; Moyeux, A.; Gager, O.; Poizat, M. Adv. Synth. Catal. 2013, 355, 790. [76] Li, Z.; Fu, Z.; Zhang, H.; Long, J.; Songa, Y.; Cai, H. New J. Chem. 2016, 40, 3014. [77] Fichez, J.; Prestat, G.; Busca, P. Org. Lett. 2018, 20, 2724. [78] Nakazawa, H.; Kamata, K.; Itazaki, M. Chem. Commun. 2005, 36, 4004. [79] Yang, Z.; Kumar, R. K.; Liao, P.; Liu, Z.; Li, X.; Bi, X. Chem. Commun. 2016, 52, 5936. [80] Iwai, T.; Fujihara, T.; Tsuji, Y. Chem. Commun. 2008, 46, 6215. [81] Huang, J.-L.; Dai, X.-J.; Li, C.-J. Eur. J. Org. Chem. 2013, 2013, 6496. [82] Yang, S.; Tang, W.; Yang, Z.; Xu, J. ACS Catal. 2018, 8, 9320. [83] Nguyen, J. D.; Matsuura, B. S.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 1218. [84] Lu, P.; Sanchez, C.; Cornella, J.; Larrosa, I. Org. Lett. 2009, 11, 5710. [85] Grainger, R.; Nikmal, A.; Cornella, J.; Larrosa, I. Org. Biomol. Chem. 2012, 10, 3172. [86] Seo, S.; Taylor, J. B.; Greaney, M. F. Chem. Commun. 2012, 48, 8270. [87] Liao, R.-Z.; Chen, S.-L.; Siegbahn, P. E. M. ACS Catal. 2015, 5, 7350. [88] Ren, Y.-L.; Tian, M.; Tian, X.-Z.; Wang, Q.; Shang, H.; Wang, J.; Zhang, Z. C. Catal. Commun. 2014, 52, 36. [89] (a) Zhang, L.; Koreeda, M. J. Am. Chem. Soc. 2004, 126, 13190. (b) Jordan, P. A.; Miller, S. J. Angew. Chem., Int. Ed. 2012, 51, 2907. [90] García, N.; García-García, P.; Fernández-Rodríguez, M. A.; Rubio, R.; Pedrosa, M. R.; Arnáiz, F. J.; Sanz, R. Adv. Synth. Catal. 2012, 354, 321. [91] Sousa, S. C. A.; Fernandes, T. A.; Fernandes, A. C. Eur. J. Org. Chem. 2016, 2016, 3109. [92] (a) Dupuy, S.; Lazreg, F.; Slawin, A. M. Z.; Cazin, C. S. J.; Nolan, S. P. Chem. Commun. 2011, 47, 5455. (b) Dupuy, S.; Nolan, S. P. Chem.-Eur. J. 2013, 19, 14034. [93] Yasuda, M.; Onishi, Y.; Ueba, M.; Miyai, T.; Baba, A. J. Org. Chem. 2001, 66, 7741. [94] Miura, K.; Tomita, M.; Yamada, Y.; Hosomi, A. J. Org. Chem. 2007, 72, 787. [95] Bauer, J. O.; Chakraborty, S.; Milstein, D. ACS Catal. 2017, 7, 4462. [96] Zou, Y.-Q.; Chakraborty, S.; Nerush, A.; Oren, D.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal. 2018, 8, 8014. [97] Moseley, J. D.; Gilday, J. P. Tetrahedron 2006, 62, 4690. [98] Diéguez, H. R.; López, A.; Domingo, V.; Arteaga, J. F.; Dobado, J. A.; Herrador, M. M.; Quílez del Moral, J. F.; Barrero, A. F. J. Am. Chem. Soc. 2010, 132, 254. [99] Meyer, V. J.; Niggemann, M. Chem.-Eur. J. 2012, 18, 4687. [100] Li, P.; Ma, N.; Wang, Z.; Dai, Q.; Hu, C. J. Org. Chem. 2018, 83, 8233. [101] Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem. 2000, 65, 6179. [102] Chandrasekhar, S.; Reddy, C. R.; Babu, B. N. J. Org. Chem. 2002, 67, 9080. [103] Milne, J. E.; Storz, T.; Colyer, J. T.; Thiel, O. R.; Seran, M. D.; Larsen, R. D.; Murry, J. A. J. Org. Chem. 2011, 76, 9519. [104] Wang, Y. P.; Liu, Y. H.; Ruan, R. S.; Wan, Y. Q.; Zhang, J. S.; Peng, H. Acta Chim. Sinica 2012, 70, 114(in Chinese). (王允圃, 刘玉环, 阮榕生, 万益琴, 张锦胜, 彭红, 化学学报, 2012, 70, 114.) [105] Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2015, 137, 11340. [106] Yang, W.; Gao, L.; Lu, J.; Song, Z. Chem. Commun. 2018, 54, 4834. [107] Liu, D.; Sun, J.; Simmons, B. A.; Singh, S. ACS Sustainable Chem. Eng. 2018, 6, 7232. [108] Zhao, X.; Zheng, X.; Yang, B.; Sheng, J.; Lu, K. Org. Biomol. Chem. 2018, 16, 1200. [109] Fukuyama, T.; Fujita, Y.; Miyoshi, H.; Ryu, I.; Kao, S.-C.; Wu, Y.-K. Chem. Commun. 2018, 54, 5582. |
[1] | Yatong Fu, Chaofan Sun, Dan Zhang, Chengguo Jin, Juyou Lu. Recent Progress in B—H Bond Functionalization of nido-Carboranes [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 438-447. |
[2] | Jian Zhang, Wanjie Liang, Yi Yang, Fachao Yan, Hui Liu. Regiocontrollable Difunctionalization of N-Allenamines [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 335-348. |
[3] | Jie Liu, Feng Han, Shuangyan Li, Tianyu Chen, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic Olefination of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 573-583. |
[4] | Hongqiong Zhao, Miao Yu, Dongxue Song, Qi Jia, Yingjie Liu, Yubin Ji, Ying Xu. Progress on Decarboxylation and Hydroxylation of Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 70-84. |
[5] | Yingzhen Zhang, Dandan Jiang, Juanhua Li, Jingjing Wang, Kunming Liu, Jinbiao Liu. Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 41-53. |
[6] | Wenfang Wang. Recent Progress in Transition-Metal-Catalyzed Asymmetric C—H Borylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3146-3166. |
[7] | Jingrui Wang, Yongkui Feng, Nengzhong Wang, Nianyu Huang, Hui Yao. Pd-Catalyzed Stereoselective Synthesis of Nitroalkyl β-C-Glycosides [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3216-3225. |
[8] | Xiaoyang Gao, Ruirui Zhai, Xun Chen, Shuojin Wang. Recent Progress in C—H Bond Activation Reaction with Vinylene Carbonate [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3119-3134. |
[9] | Sifan Dong, Haolong Li, Yuan Qin, Shiming Fan, Shouxin Liu. Research Progress of Amino Acids as Transient Directing Groups in C—H Bond Activation Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2351-2367. |
[10] | Zhongrong Xu, Jieping Wan, Yunyun Liu. Transition Metal-Free C—H Thiocyanation and Selenocyanation Based on Thermochemical, Photocatalytic and Electrochemical Process [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2425-2446. |
[11] | Yangyang Chu, Zhaobin Han, Kuiling Ding. Progresses in the Application of Kinetic Resolution in Transition Metal Catalyzed Asymmetric (Transfer) Hydrogenation [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1934-1951. |
[12] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
[13] | Xiaojing Hu, Feixiang Guo, Runqing Zhu, Bingqi Zhou, Tao Zhang, Lizhen Fang. Synthesis of p-Alkoxy Phenol and Its Application after Dearomatization [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2239-2244. |
[14] | Jiao Qin, Jie Chen, Yan Su. Synthesis of 2,2,6,6-Tetramethylpiperidin-1-yl-2-(2-cyanophenyl)-acetate by Transition Metal-Free Radical Cleavage Reaction from α-Bromoindanone [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2171-2177. |
[15] | Wang Jiang, Zhuangzhi Shi. Recent Progress in meta-/para-Selective Aromatic C—H Borylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1691-1705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||