Chinese Journal of Organic Chemistry ›› 2020, Vol. 40 ›› Issue (12): 4216-4227.DOI: 10.6023/cjoc202004053 Previous Articles Next Articles
Special Issue: 有机光催化虚拟合辑
刘洋a, 林立青b, 韩莹徽b, 刘颖杰b
收稿日期:
2020-04-30
修回日期:
2020-06-10
发布日期:
2020-06-28
通讯作者:
刘洋, 刘颖杰
E-mail:348596994@qq.com;liuyj691@nenu.edu.cn
基金资助:
Liu Yanga, Lin Liqingb, Han Yinghuib, Liu Yingjieb
Received:
2020-04-30
Revised:
2020-06-10
Published:
2020-06-28
Supported by:
Share
Liu Yang, Lin Liqing, Han Yinghui, Liu Yingjie. Application of Iodine and Iodide in Photocatalysis Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4216-4227.
[1] Hu, A.-Z.; Tang, C.-Q. J. Funct. Mater. 2001, 32, 586(in Chinese). (胡安正, 唐超群, 功能材料, 2001, 32, 586.) [2] (a) Liu, Y.-Y.; Liang, D.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2019, 55, 4853. (b) Li, F.-Y.; Tian, D.; Fan, Y.-F.; Lee, R.; Lu, G.; Yin, Y.; Qiao, B. Nat. Commun. 2019, 10, 1774. (c) Cavedon, C.; Madani, A.; Seeberger, P. H.; Perter, B. Org. Lett. 2019, 21, 5331. (d) Fabry, D. C.; Zoller, J.; Rueping, M. Org. Chem. Front. 2019, 6, 2635. (e) DiMeglio, J. L.; Breuhaus Alvarez, J. L.; Li, S. Q.; Bartlett, B. M. ACS Catal. 2019, 9, 5732. [3] (a) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (c) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911. [4] (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828. (c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985. (d) Marzo, L.; Pagire, S. K.; Reiser, O. B. Angew. Chem., Int. Ed. 2018, 57, 10034. [5] (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. (c) Cherevatskaya, M.; König, B. Russ. Chem. Rev. 2014, 83, 183. (d) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473. (e) Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349. (f) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. (g) Hari, D. P.; Kçnig, B. Chem. Commun. 2014, 50, 6688. (h) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600. (i) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Science 2014, 346, 725. [6] (a) Liu, Y.; Zhang, M.; Tung, C.-H.; Wang, Y. ACS Catal. 2016, 6, 8389. (b) Lang, X.; Ma, W.; Chen, C.; Ji, H.; Zhao, J. Acc. Chem. Res. 2014, 47, 355. (c) Kisch, H. Angew. Chem., Int. Ed. 2013, 52, 812. (d) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341. [7] Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329. [8] (a) Togo, H.; Iida, S. Synlett 2006, 2159. (b) Shi, D.; Qin, H. T.; Zhu, C.; Liu, F. Eur. J. Org. Chem. 2015, 5084. (c) Hou, J.; Zhang, X. T.; Yu, W. Q.; Chang, J. B. Chin. J. Org. Chem. 2018, 38, 3236(in Chinese). (侯姣, 张新婷, 于文全, 常俊标, 有机化学, 2018, 38, 3236.) [9] Brown, R. L.; Klemperer, W. J. Chem. Phys. 1964, 41, 3072. [10] (a) Meadows, L. F.; Noyes, R. M.; J. Am. Chem. Soc. 1960, 82, 1872. (b) Olmsted, J.; Karal, G. J. Am. Chem. Soc. 1972, 94, 3305. (c) Luther, G. W.; Wu, J.; Cullen, J. B. ACS Catal. 1995, 244, 135. [11] (a) Gopal, P. R.; Prabakar, A. C.; Chandrashekar, E. R. R.; Bhaskar, B. V.; Somaiah, P. V. J. Chin. Chem. Soc. 2013, 60, 639. (b) Ghosh, N.; Sheldrake, H. M.; Searcey, M. P. K. Curr. Top. Med. Chem. 2009, 9, 1494. (c) Zechmeister, K.; Brandl, F.; Hoppe, W.; Hecker, E.; Opferkuch, H. J.; Adolf, W. Tetrahedron Lett. 1970, 11, 4075. [12] (a) Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7304. (b) Faust, R. Angew. Chem., Int. Ed. 2000, 39, 2495. [13] (a) Gopinath, P.; Chandrasekaran, S. J. Org. Chem. 2011, 76, 700. (b) Korotkov, V. S.; Larionov, O. V.; Hofmeister, A.; Magull, J.; de Meijere, A. J. Org. Chem. 2007, 72, 7504. (c) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014. [14] (a) Zhang, Y.; Qian, R.; Zheng, X.; Zeng, Y.; Sun, J.; Chen, Y.; Ding, A.; Guo, H. Chem. Commun. 2015, 51, 54. (b) Dao, H. T.; Baran, P. S. Angew. Chem., Int. Ed. 2014, 53, 14382. (c) Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 11292. (d) Alexakis, A.; Krause, N.; Woodward, S. Copper-Catal. Asymmetric Synth. 2014, 20, 3. (e) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Synthesis 2014, 46, 979. [15] (a) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (b) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. (c) Doyle, M. P. Chem. Rev. 1986, 86, 919. (d) Bolsønes, H.; Bonge-Hansen, H.; Bonge-Hansen, T. Synlett 2014, 25, 221. (e) Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7304. (f) Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 6970. (g) Pons, A.; Beucher, H.; Ivashkin, P.; Lemonnier, G.; Poisson, T.; Charette, A. B.; Jubault, P.; Pannecoucke, X. Org. Lett. 2015, 17, 1790. [16] (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323. (b) Taillemaud, S.; Diercxsens, N.; Gagnon, A.; Charette, A. B. Angew. Chem., Int. Ed. 2015, 54, 14108. [17] Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353. [18] Kulinkovich, O. G.; Sviridov, S. V.; Vasilevski, D. A. Synthesis 1991, 234. [19] (a) Dhakal, R. C.; Dieter, R. K. J. Org. Chem. 2013, 78, 12426. (b) Ferrary, T.; David, E.; Milanole, G.; Besset, T.; Jubault, P.; Pannecoucke, X. Org. Lett. 2013, 15, 5598. (c) Aitken, L. S.; Hammond, L. E.; Sundaram, R.; Shankland, K.; Brown, G. D.; Cobb, A. J. A. Chem. Commun. 2015, 51, 13558. (d) Jiang, K.; Chen, Y. Tetrahedron Lett. 2014, 55, 2049. [20] Usami, K.; Nagasawa, Y.; Yamaguchi, E.; Tada, N.; Itoh, A. Org. Lett. 2016, 18, 8. [21] (a) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. 1985, 24, 94. (b) Picman, A. K. Biochem. Syst. Ecol. 1986, 14, 255. (c) Nefkens, G. H. L.; Thuring, J. W. J. F.; Beenakkers, M. F. M.; Zwanenburg, B. J. Agric. Food Chem. 1997, 45, 2273. (d) Mangnus, E. M.; Zwanenburg, B. J. J. Agric. Food Chem. 1992, 40, 1066. (e) Fang, B.; Xie, X.; Zhao, C.; Jing, P.; Li, H.; Wang, Z.; Gu, J.; She, X. J. Org. Chem. 2013, 78, 6338. [22] Selected examples for Bronsted acid mediated cyclization:(a) Nair, V.; Prabhakaran, J.; George, T. G. Tetrahedron 1997, 53, 15061. (b) Taylor, S. K. Synthesis 1998, 1009. (c) Ramachandran, P. V.; Krzeminski, M. P.; Reddy, M. V. R.; Brown, H. C. Tetrahedron:Asymmetry 1999, 10, 11. (d) Sibrian-Vazquez, M.; Spivak, D. A. Synlett 2002, 1105. (e) Zhao, J.; Burgess, K. Org. Lett. 2009, 11, 2053. (f) Jha, V.; Kondekar, N. B. Org. Lett. 2010, 12, 2762. (g) Qabaja, G.; Wilent, J. E.; Benavides, A. R.; Bullard, G. E.; Peterson, K. S. Org. Lett. 2013, 15, 1266. (h) Wilent, J.; Peterson, K. S. J. Org. Chem. 2014, 79, 2303. (i) Jha, V.; Kumar, P. RSC Adv. 2014, 4, 3238. [23] Selected examples for Lewis acid mediated cyclization:(a) Yang, C.-G.; Reich, N. W.; Shi, Z.; He, C. Org. Lett. 2005, 7, 4553. (b) Yeh, M.-C. P.; Lee, Y.-C.; Young, T.-C. Synthesis 2006, 3621. (c) Toullec, P. Y.; Genin, E.; Antoniotti, S.; Genet, J.-P.; Michelet, V. Synlett 2008, 707. (d) Gooßen, L. J.; Ohlmann, D. M.; Dierker, M. Green Chem. 2010, 12, 197. (e) Valerio, V.; Petkova, D.; Madelaine, C.; Maulide, N. Chem.-Eur. J. 2013, 19, 2606. (f) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Lett. 2013, 15, 4838. (g) Shu, X.-Z.; Nguyen, S. C.; He, Y.; Oba, F.; Zhang, Q.; Canlas, C.; Somorjai, G. A.; Alivisatos, A. P.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 7083. (h) Zheng, M.; Chen, P.; Huang, L.; Wu, W.; Jiang, H. Org. Lett. 2017, 19, 5756. [24] Selected examples for oxidative or reductive cyclization:(a) Taylor, S. K.; Chmiel, N. H.; Simons, L. J.; Vyvyan, J. R. J. Org. Chem. 1996, 61, 9084. (b) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stolts, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892. (c) Tellitu, I.; Serna, S.; Herrero, M. T.; Moreno, I.; Domínguez, E.; SanMartin, R. J. Org. Chem. 2007, 72, 1526. (d) Dohi, T.; Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Org. Lett. 2007, 9, 3129. (e) Shu, C.; Liu, M.-Q.; Sun, Y.-Z.; Ye, L.-W. Org. Lett. 2012, 14, 4958. (f) Tada, N.; Ishigami, T.; Cui, L.; Ban, K.; Miura, T.; Itoh, A. Tetrahedron Lett. 2013, 54, 256. (g) Xie, X.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 3767. (h) Duhamel, T.; Muñiz, K. Chem. Commun. 2019, 55, 933. [25] Selected examples for cyclizative lactonization:(a) Kishida, A.; Nagaoka, H. Tetrahedron Lett. 2008, 49, 6393. (b) Murphy, S. K.; Dong, V. M. J. Am. Chem. Soc. 2013, 135, 5553. (c) Zhang, Q.-B.; Ban, Y.-L.; Zhou, D.-G.; Zhou, P.-P.; Wu, L.-Z.; Liu, Q. Org. Lett. 2016, 18, 5256. (d) Sakai, N.; Horikawa, S.; Ogiwara, Y. RSC Adv. 2016, 6, 81763. [26] Maejima, S.; Yamaguchi, E.; Itoh, A. ACS Omega 2019, 4, 4856. [27] Maejima, S.; Yamaguchi, E.; Itoh, A. J. Org. Chem. 2019, 84, 9519. [28] Takedaa, M.; Maejima, S.; Yamaguchi, E.; Itoh, A. Tetrahedron 2019, 60, 151284. [29] For reviews on the reactions of alkynes, see:(a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. (b) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. (c) Willis, M. C. Chem. Rev. 2010, 110, 725. (d) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937. (e) Gilmore, K.; Alabugin, I. V. Chem. Rev. 2011, 111, 6513. (f) Wille, U. Chem. Rev. 2013, 113, 813. (g) Salvio, R.; Moliterno, M.; Bella, M. Asian J. Org. Chem. 2014, 3, 340. (h) Quintero-Duque, S.; Dyballa, K. M.; Fleischer, I. Tetrahedron Lett. 2015, 56, 2634. (i) Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem.-Eur. J. 2015, 21, 7648. (j) Besset, T.; Poisson, T.; Pannecoucke, X. Eur. J. Org. Chem. 2015, 2765. (k) Hassan, S.; Mueller, T. J. J. Adv. Synth. Catal. 2015, 357, 617. (l) Fang, G.; Bi, X. Chem. Soc. Rev. 2015, 44, 8124. [30] For reviews on C≡C cleavage, see:(a) Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2009, 82, 778. (b) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100. (c) Assa, C. Synthesis 2011, 3389. (d) Ruhland, K. Eur. J. Org. Chem. 2012, 2683. (e) Allpress, C. J.; Berreau, L. M. Coord. Chem. Rev. 2013, 257, 3005. (f) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (g) Liu, H.; Feng, M.; Jiang, X. Chem.-Asian. J. 2014, 9, 3360. (h) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414. [31] (a) Adams, H.; Guio, L. V. Y.; Morris, M. J.; Spey, S. E. J. Chem. Soc., Dalton Trans. 2002, 2907. (b) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724. (c) Hayashi, N.; Ho, D. M.; Pascaljr, R. A. Tetrahedron Lett. 2000, 41, 4261. (d) Cairns, G. A.; Carr, N.; Green, M.; Mahon, M. F. Chem. Commun. 1996, 2431 (e) OÏConnor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013. (f) Moriarty, R. M.; Penmasta, R.; Awasthi, X. A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124. (g) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1133. (h) Sullivan, B. P.; Smythe, R. S.; Kober, E. M.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4701. [32] Dighea, S. U.; Batra, S. Adv. Synth. Catal. 2016, 358, 500. [33] For selected examples, see:(a) Sato, A.; Morishita, T.; Shiraki, T.; Yoshioka, S.; Horikoshi, H.; Kuwano, H.; Hanzawa, H.; Hata, T. J. Org. Chem. 1993, 58, 7632. (b) Carroll, A. R.; Hyde, E.; Smith, J.; Quinn, R. J.; Guymer, G.; Forster, P. I. J. Org. Chem. 2005, 70, 1096. (c) O'Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532. (d) Stempel, E.; Gaich, T. Acc. Chem. Res. 2016, 49, 2390. [34] For selected reviews and book, see:(a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234. (b) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676. [35] (a) Chatgilialoglu, C.; Ferreri, C.; Ballestri, M.; Curran, D. P. Tetrahedron Lett. 1996, 37, 6387. (b) Clive, D. L. J.; Paul, C. C.; Wang, Z. J. Org. Chem. 1997, 62, 7028. (c) Miura, K.; Fujisawa, N.; Saito, H.; Wang, D.; Hosomi, A. Org. Lett. 2001, 3, 2591. (d) Usugi, S.; Yorimitsu, H.; Oshima, K. Tetrahedron Lett. 2001, 42, 4535. (e) Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. J. Org. Chem. 2001, 66, 7776. (f) Tanaka, S.; Nakamura, T.; Yorimitsu, H.; Oshima, K. Synlett 2002, 569. (g) Cai, Y.; Roberts, B. P. Tetrahedron Lett. 2003, 44, 4645. (h) Cai, Y.; Roberts, B. P.; Tocher, D. A.; Barnett, S. A. Org. Biomol. Chem. 2004, 2, 2517. (i) Takami, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2004, 6, 4555. (j) Song, H.-J.; Lim, C. J.; Kim, S. Chem. Commun. 2006, 2893. (k) Beckwith, A. L. J.; Schiesser, C. H. Org. Biomol. Chem. 2011, 9, 1736. (l) Klos, M. R.; Kazmaier, U. Eur. J. Org. Chem. 2013, 2013, 1726. [36] Sudo, Y.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1610. [37] (a) Cabrele, C.; Reiser, O. J. Org. Chem. 2016, 81, 10109. (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960. [38] (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893. (b) Felpin, F. X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693. (c) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435. (d) Ritchie, T. J.; Macdonald, S. J. F.; Young, R. J.; Pickett, S. D. Drug Discovery Today 2011, 16, 164. [39] Zhang, H.-W.; Muñiz, K. ACS Catal. 2017, 7, 4122. [40] (a) Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837. (b) Djerassi, C. Chem. Rev. 1948, 43, 271. (c) Skell, P. S.; Day, J. C. Acc. Chem. Res. 1978, 11, 381. [41] Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev. 2016, 116, 2478. [42] Breugst, M.; Detmar, E.; vonder Heiden, D. ACS Catal. 2016, 6, 3203. [43] Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Chem. Commun. 2014, 50, 13691. [44] (a) Svensson, P. H.; Kloo, L. Chem. Rev. 2003, 103, 16494. (b) de Violet, P. F. Rev. Chem. Intermed. 1981, 4, 121. [45] (a) Yamada, K.; Kato, T.; Hirata, Y. J. Chem. Soc., Chem. Commun. 1969, 1479. (b). Tada, N.; Cui, L.; Ishigami, T.; Ban, K.; Miura, T.; Itoh, A. Green Chem. 2012, 14, 3007. (c) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. J. Chin. Chem. Soc. 2005, 52, 1029. (d) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. Heterocycles 2005, 65, 649. (e) Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848. (f) Shah, A. A.; Khan, Z. A.; Choudhary, N.; Loholter, C.; Schafer, S.; Marie, G. P. L.; Farooq, U.; Witulski, B.; Wirth, T. Org. Lett. 2009, 11, 3578. (g) Farooq, U.; Schafer, S.; Shah, A. A.; Freudendahl, D. M.; Wirth, T. Synthesis 2010, 1023. (h) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331. (i) Uyanik, M.; Ishihara, K. ChemCatChem 2012, 4, 177. [46] Tada, N.; Ishigami, T.; Cui, L.; Ban, K.; Miura, T.; Itoh, A. Tetrahedron Lett. 2013, 54, 256. [47] Selvam, T. P.; Kumar, P. V. Res. Pharm. 2011, 1, 1. [48] (a) Gundla, R.; Kazemi, R.; Sanam, R.; Muttineni, R.; Sarma, J. A. R. P.; Dayam, R.; Neamati, N. J. Med. Chem. 2008, 51, 3367. (b) Mendes da Silva, J. F.; Walters, M.; Al-Damluji, S.; Ganellin, C. R. Bioorg. Med. Chem. 2008, 16, 7254. [49] (a) Wendlandt A. E.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 506. (b) Chen, Z.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. J. Org. Chem. 2013, 78, 11342. (c) Vlaar, T.; Cioc, R. C.; Mampuys, P.; Maes, B. U. W.; Orru, R. V. A.; Ruijter, E. Angew. Chem., Int. Ed. 2012, 51, 13058. (d) Rachakonda, S.; Pratap, P. S.; Rao, M. V. B. Synthesis 2012, 44, 2065. (e) Yan, Y.; Wang, Z. Chem. Commun. 2011, 47, 9513. (f) Han, B.; Wang, C.; Han, R.-F.; Yu, W.; Duan, X.-Y.; Fang, R.; Yang, X.-L. Chem. Commun. 2011, 47, 7818. (g) Karnakar, K.; Shankar, J.; Murthy, S. N.; Ramesh, K.; Nageswar, Y. V. D. Synlett 2011, 1089. (h) Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Chem. Coommun. 2010, 46, 5244. (i) Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841. (j) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2009, 74, 4934. (k) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. Chem. Commun. 2008, 2935. (l) Ferrini, S.; Ponticelli, F.; Taddei, M. Org. Lett. 2007, 9, 69. [50] Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem. 2012, 77, 1136. [51] Fang, J.; Zhou, J.; Fang, Z. RSC Adv. 2013, 3, 334. [52] Maheswari, C. U.; Kumar, G. S.; Venkateshwar, M.; Kumar, R. A.; Kantam, M. L.; Reddy, K. R. Adv. Synth. Catal. 2010, 352, 341. [53] Vanden Eynde, J. J.; Godin, J.; Mayence, A.; Maquestiau, A.; Anders, E. Synthesis 1993, 867. [54] Peng, Y.; Zeng, Y.; Qiu, G.; Cai, L.; Pike, V. W. J. Heterocycl. Chem. 2010, 47, 1240. [55] Yamaguchi, T.; Sakairi, K.; Yamaguchi, E.; Tada, N.; Itoh, A. RSC Adv. 2016, 6, 56892. [56] Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257. [57] (a) Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Tetrahedron Lett. 1968, 9, 5609. (b) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28, 489. (c) Minisci, F.; Fontana, F.; Vismara, E. J. Heterocycl. Chem. 1990, 27, 79. [58] (a) Jin, J.; MacMillan, D. W. C. Nature 2015, 525, 87. (b) Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W. J. Org. Chem. 2016, 81, 6980. (c) Jin, J.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 1565. (d) Li,G.-X.; Morales-Rivera, C. A.; Wang, Y. X.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407. (e) Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal. 2017, 7, 4057. (f) Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907. (g) Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y. Chem.-Eur. J. 2017, 23, 2537. (h) Peng, S.; Lin, Y. W.; He, W. M. Chin. J. Org. Chem. 2020, 40, 541(in Chinese). (彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.) [59] Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429. [60] Fu, Y.; Liu, L.; Yu, H.-Z.; Wang, Y.-M.; Guo, Q.-X. J. Am. Chem. Soc. 2005, 127, 7227. [61] Noble, A.; Aggarwal, V. K. Sci. China:Chem. 2019, 62, 1083. [62] (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123. (b) Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121. (c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (d) Wu, S. W.; Liu, J. L.; Liu, F. Org. Lett. 2016, 18, 1. [63] For selected reviews and papers:(a) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003. (b) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 132, 6104. (c) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247. (d) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195. [64] For selected examples:(a) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748. (b) Jia, Y.-X.; Kündig, E. P. Angew. Chem., Int. Ed. 2009, 48, 1636. (c) Piou, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 11561. [65] For selected reviews:(a) Kolb, H. C.; Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483. (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (c) Muňiz, K. Angew. Chem., Int. Ed. 2009, 48, 9412. (d) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (e) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (f) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604. [66] Ji, W.-Q.; Tan, H.; Wang, M.; Li, P.-H.; Wang, L. Chem. Commun. 2016, 52, 1462. [67] Seoud, O. A.; Ferreira, M.; Rodrigues, W. A.; Ruasse, M. F. J. Phys. Org. Chem. 2005, 18, 173. [68] (a) Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.; Toyonari, M.; Sueda, T.; Goto, S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 7716. (b) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. (c) Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060. [69] (a) Li, H.; Li, P.; Tan, H.; Wang, L. Chem.-Eur. J. 2013, 19, 14432. (b) Chen, L.; Li, H.; Yu, F.; Wang, L. Chem. Commun. 2014, 50, 14866. [70] (a) Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672. (b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374. [71] (a) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med. Chem. Lett. 2000, 10, 59. (b) Wang, C. J.; Hsieh, Y. J.; Chu, C. Y.; Lin, Y. Y.; Tseng, T. H. Cancer Lett. 2002, 183, 163. (c) Zhao, Y.; Zheng, Q.; Dakin, K.; Xu, K.; Martinez, M. L.; Li, W. H. J. Am. Chem. Soc. 2004, 126, 4653. (d) Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Curr. Med. Chem. 2005, 12, 887. (e) Signore, G.; Nifosi, R.; Albertazzi, L.; Storti, B.; Bizzarri, R. J. Am. Chem. Soc. 2010, 132, 1276. (f) Wang, C.; Wu, C.; Zhu, J.; Miller, R. H.; Wang, Y. J. Med. Chem. 2011, 54, 2331. (g) Sashidhara, K. V.; Kumar, A.; Chatterjee, M.; Rao, K. B.; Singh, S.; Verma, A. K.; Palit, G. Bioorg. Med. Chem. Lett. 2011, 21, 1937. (h) Peng, X.; Damu, G.; Zhou, C. Curr. Pharm. Des. 2013, 19, 3884. (i) Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Bioorg. Med. Chem. 2014, 22, 3806. [72] (a) Harayama, T.; Katsuno, K.; Nishiok, H.; Fujii, M.; Nishita, Y.; Ishii, H.; Kaneko, Y. Heterocycles 1994, 39, 613. (b) Kadnikov, D. V.; Larock, R. C. Org. Lett. 2000, 2, 3643. (c) Kabalka, G. W.; Dong, G.; Venkataiah, B. Tetrahedron Lett. 2004, 45, 5139. (d) Oyamada, J.; Kitamura, T. Tetrahedron 2006, 62, 6918. (e) Surya, P. R. H.; Sivakumar, S. J. Org. Chem. 2006, 71, 8715. (f) Zhang, L.; Meng, T.; Fan, R.; Wu, J. J. Org. Chem. 2007, 72, 7279. (g) Yuan, H.-J.; Wang, M.; Liu, Y.-J.; Liu, Q. Adv. Synth. Catal. 2009, 351, 112. (h) Yuan, H.; Wang, M.; Liu, Y.; Wang, L.; Liu, J.; Liu, Q. Chem.-Eur. J. 2010, 16, 13450. (i) Raju, B.-C.; Tiwari, A.-K.; Kumar, J.-K.; Ali, A.-Z.; Agawane, S.-B.; Saidachary, G.; Madhusudana, K. Bioorg. Med. Chem. 2010, 18, 358. (j) Fernandes, T. A.; GontijoVaz, B.; Eberlin, M. N.; Silva, A. J. M.; Costa, P. R. R. J. Org. Chem. 2010, 75, 7085. (k) Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Y.; Li, Q.; Wang, H. J. Org. Chem. 2015, 80, 1550. [73] Yang, S.; Tan, H.; Ji, W.-Q.; Zhang, X.-B.; Li, P.-H.; Wang, L. Adv. Synth. Catal. 2017, 359, 1. [74] Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872. [75] (a) Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985. (b) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. (c) Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060. [76] (a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. (b) Carlo, B.; Donna, M. H.; Amos, B. S. Chem. Med. Chem. 2013, 8, 385. (c) Ballatore, C.; Soper, J. H.; Piscitelli, F.; James, M.; Huang, L.; Atasoylu, O.; Huryn, D. M.; Trojanowski, J. Q.; Lee, V. M.; Brunden, K. R.; Smith, A. B. J. Med. Chem. 2011, 54, 6969. (d) Malwal, S. R.; Sriram, D.; Yogeeswari, P.; Konkimalla, V. B.; Chakrapani, H. J. Med. Chem. 2012, 55, 553. (e) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200. (f) Adhikari, N.; Mukherjee, A.; Saha, A.; Jha, T. Eur. J. Med. Chem. 2017, 129, 72. [77] (a) Wynne, J. H.; Price, S. E.; Rorer, J. R.; Stalick, W. M. Synth. Commun. 2003, 33, 341. (b) Khalafi-Nezhad, A.; Parhami, A.; Zare, A.; Shirazi, A. N.; Zare, A. R. M.; Hassaninejad, A. Can. J. Chem. 2008, 86, 456. (c) Wu, X.-F.; Vovard-Le Bray, C.; Bechki, L.; Darcel, C. Tetrahedron 2009, 65, 7380. (d) Chang, J. W. W.; Ton, T. M. U.; Tania, S.; Taylor, P. C.; Chan, P. W. H. Chem. Commun. 2010, 46, 922. (e) Chawla, R.; Singh, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 3553. (f) Morales, S.; Guijarro, F. G.; Garcia Ruano, J. L.; Cid, M. B. J. Am. Chem. Soc. 2014, 136, 1082. (g) Reeves, J. T.; Visco, M. D.; Marsini, M. A.; Grinberg, N.; Busacca, C.A.; Mattson, A. E.; Senanayake, C. H. Org. Lett. 2015, 17, 2442. (h) Sharghi, H.; Hosseini-Sarvari, M.; Ebrahimpourmoghaddam, S. ARKIVOC 2007, xv, 255. [78] (a) Sisko, J.; Weinreb, S. M. J. Org. Chem. 1990, 55, 393. (b) Trost, B. M.; Marrs, C. J. Org. Chem. 1991, 56, 6468. (c) Huang, D.; Wang, X.; Wang, X.; Chen, W.; Wang, X.; Hu, Y. Org. Lett. 2016, 18, 604. [79] (a) Hopkins, M. D.; Scott, K. A.; DeMier, B. C.; Morgan, H. R.; Macgruder, J. A.; Lamar, A. A. Org. Biomol. Chem. 2017, 15, 9209. (b) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603. (c) Höfling, S. B.; Heinrich, M. R. Synthesis 2011, 173. (d) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044. (e) Achar, T. K.; Mal, P. J. Org. Chem. 2015, 80, 666. (f) Jin, L. M.; Lu, H.; Cui, Y.; Lizardi, C. L.; Arzua, T. N.; Wojtas, L.; Cui, X.; Zhang, X. P. Chem. Sci. 2014, 5, 2422. (g) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem. 2012, 51, 3231. [80] Hopkins, M. D.; Brandeburg, Z. C.; Hanson A. J.; Lamar, A. A. Molecules 2018, 23, 1838. |
[1] | Wenwen Chen, Qin Zhang, Songyue Zhang, Fangfang Huang, Xinyin Zhang, Jianfeng Jia. Visible Light Promoted Coupling Reaction of Alkynyl Iodide and Sodium Sulphinate without Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 584-592. |
[2] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[3] | Tongyang Cao, Wei Li, Lijing Wang. Recent Progress in N-Iodosuccinimide (NIS)-Mediated Iodination Reactions [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 508-524. |
[4] | Jianghu Dong, Liangming Xuan, Chi Wang, Chenxi Zhao, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fen'er Chen. Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 111-136. |
[5] | Yukun Jin, Baoyi Ren, Fushun Liang. Visible Light-Mediated Selective C—F Bond Cleavage of Trifluoromethyl Groups and Its Application in Synthesizing gem-Difluoro-Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 85-110. |
[6] | Sijie Fan, Wuheng Dong, Caiyun Liang, Guichao Wang, Yao Yuan, Zuodong Yin, Zhaoguo Zhang. Visible Light-Induced Radical Cyclization for the Construction of 4-Aryl-1,2-dihydronaphthalenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3277-3286. |
[7] | Chunming Gui, Tongyao Zhou, Haifeng Wang, Qiongjiao Yan, Wei Wang, Jin Huang, Fener Chen. Recent Advances in Visible Light Photoredox-Catalyzed Alkynylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2647-2663. |
[8] | Min Wu, Bo Liu, Jialong Yuan, Qiang Fu, Rui Wang, Dawei Lou, Fushun Liang. Recent Progress in the C—S Bond Formation Reactions Mediated by Visible Light [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2269-2292. |
[9] | Ning Liu, Xiaodan Cuan, Hui Li, Xiyan Duan. Progress in the Study of α-Functionalization of Enaminone [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 602-621. |
[10] | Yu Zhao, Yurong Duan, Shihui Shi, Yubin Bai, Liangzhu Huang, Xiaojun Yang, Yantu Zhang, Bin Feng, Jianbo Zhang, Qiuyu Zhang. Recent Advances of Hypervalent Iodine(III) Reagents upon Visible Light Irradiation [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4106-4140. |
[11] | Juan Tang, Jiayu Hu, Zhiqiang Zhu, Shouzhi Pu. Recent Advances in Visible-Light-Induced Organic Phosphine- Promoted Deoxygenative Functionalization Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4036-4056. |
[12] | Haojie Ma, Fengyuan Zhou, Fanwen Su, Bo Han, Ran Li, Yuqi Zhang, Jijiang Wang. Iodine-Promoted Transamidation of N,N-Dimethylacetamide (DMA) with Amines [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3960-3965. |
[13] | Qianmin Li, Manman Wang, Wenquan Yu, Junbiao Chang. Synthesis of β-Nitroamines and α-Aminonitriles by I2-Mediated Oxidative C—C Bond Formation [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3966-3976. |
[14] | Huaiyuan Zhang, Nuo Xu, Rongping Tang, Xingli Shi. Recent Advances in Asymmetric Dearomatization Reactions Induced by Chiral Hypervalent Iodine Reagents [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3784-3805. |
[15] | Zhixia Jing, Jianxi Du, Ping Jiang, Keyume Ablajan. Tetrabutylammonium Iodide-Mediated One-Pot Construction of 1,3,4-Oxadiazole Derivatives with Alkyl Amide and Hydrazine [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3930-3938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||