Chinese Journal of Organic Chemistry ›› 2020, Vol. 40 ›› Issue (11): 3536-3558.DOI: 10.6023/cjoc202010025 Previous Articles Next Articles
Special Issue: 创刊四十周年专辑
王路宁, 余志祥
收稿日期:
2020-10-16
修回日期:
2020-11-09
发布日期:
2020-11-12
通讯作者:
余志祥
E-mail:yuzx@pku.edu.cn
Wang Lu-Ning, Yu Zhi-Xiang
Received:
2020-10-16
Revised:
2020-11-09
Published:
2020-11-12
Share
Wang Lu-Ning, Yu Zhi-Xiang. Transition-Metal-Catalyzed Cycloadditions for the Synthesis of Eight-Membered Carbocycles: an Update from 2010 to 2020[J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3536-3558.
[1] (a) Petasis, N. A.; Patane, M. A. Tetrahedron 1992, 48, 5757. (b) Mehta, G.; Singh, V. Chem. Rev. 1999, 99, 881. (c) Yet, L. Chem. Rev. 2000, 100, 2963. [2] Suffness, M. Taxol:Science and Applications, CRC Press, Boca Raton, FL, 1995. [3] (a) Tang, Y.-Z.; Liu, Y.-H.; Chen, J.-X. Mini-Rev. Med. Chem. 2012, 12, 53. (b) Shang, R.; Wang, J.; Guo, W.; Liang, J. Curr. Top. Med. Chem. 2013, 13, 3013. (c) Goethe, O.; Heuer, A.; Ma, X.; Wang, Z.; Herzon, S. B. Nat. Prod. Rep. 2019, 36, 220. [4] (a) Armanino, N.; Charpentier, J.; Flachsmann, F.; Goeke, A.; Liniger, M.; Kraft, P. Angew. Chem., Int. Ed. 2020, 59, 16310. (b) Kraft, P.; Bajgrowicz, J. A.; Denis, C.; Fráter, G. Angew. Chem., Int. Ed. 2000, 39, 2980. (c) Birkbeck, A. A. Challenges in the Synthesis of Natural and Non-Natural Volatiles. In The Chemistry and Biology of Volatiles, Ed.:Herrmann, A., John Wiley & Sons, Ltd., New York, 2010, pp. 173~193. (d) Vesley, J. A.; Massie, S. N. US 3985769, 1976. (e) Markert, T. WO 99/54430, 1998. (f) Fráter, G.; Bajgrowicz, J. A.; Kraft, P. Tetrahedron 1998, 54, 7633. (g) Granier, T.; Bajgrowicz, J. A.; Hanhart, A. US 7888309, 2011. [5] (a) Martinez, H.; Ren, N.; Matta, M. E.; Hillmyer, M. A. Polym. Chem. 2014, 5, 3507. (b) Hill, A. R.; Balogh, J.; Moncho, S.; Su, H.-L.; Tuba, R.; Brothers, E. N.; Al-Hashimi, M.; Bazzi, H. S. J. Polym. Sci., Part A:Polym. Chem. 2017, 55, 3137. [6] For selected reviews for Diels-Alder reaction in synthesis, see:(a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T. Vassilikogiannakis. G. Angew. Chem., Int. Ed. 2002, 41, 1668. (b) Takao, K.-I.; Munakata, R.; Tadano, K.-I. Chem. Rev. 2005, 105, 4779. (c) Wessig, P.; Müller, G. Chem. Rev. 2008, 108, 2051. (d) Funel, J.-A.; Abele, S. Angew. Chem., Int. Ed. 2013, 52, 3822. (e) Jiang, X.; Wang, R. Chem. Rev. 2013, 113, 5515. (f) Heravi, M. M.; Vavsari, V. F. RSC Adv. 2015, 5, 50890. (g) Yang, B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926. (h) Tasdelen, M. A. Polym. Chem. 2011, 2, 2133. [7] Selected reviews for metal-catalyzed[4+2] reactions:(a) Reymond, S.; Cossy, J. Chem. Rev. 2008, 108, 5359. (b) Carmona, D.; Lamata, M. P.; Oro, L. A. Coord. Chem. Rev. 2000, 200~202, 717. (c) Wender, P. A.; Smith, T. E. Tetrahedron 1998, 54, 1255. (d) Frühauf, H.-W. Chem. Rev. 1997, 97, 523. (e) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007. (f) Robinson, J. E. Modern Rhodium-Catalyzed Organic Reactions; Ed.:Evans, P. A., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005, pp. 241~262. [8] (a) Ben-Shoshan, R.; Sarel, S. J. Chem. Soc. D 1969, 883. (b) Victor, R.; Ben-Shoshan, R.; Sarel, S. Tetrahedron Lett. 1970, 4253. (c) Sarel, S. Acc. Chem. Res. 1978, 11, 204. (d) Aumann, R. J. Am. Chem. Soc. 1974, 96, 2631. (e) Taber, D. F.; Kanai, K.; Jiang, Q.; Bui, G. J. Am. Chem. Soc. 2000, 122, 6807. (f) Taber, D. F.; Joshi, P. V.; Kanai, K. J. Org. Chem. 2004, 69, 2268. (g) Kurahashi, T.; de Meijere, A. Synlett 2005, 2619. (h) Iwasawa, N.; Owada, Y.; Matsuo, T. Chem. Lett. 1995, 115. (i) Owada, Y.; Matsuo, T.; Iwasawa, N. Tetrahedron 1997, 53, 11069. (j) Murakami, M.; Itami, K.; Ubukata, M.; Tsuji, I.; Ito, Y. J. Org. Chem. 1998, 63, 4. (k) Shu, D.; Li, X.; Zhang, M.; Robichaux, P. J.; Tang, W. Angew. Chem., Int. Ed. 2011, 50, 1346. (l) Grabowski, N. A.; Hughes, R. P.; Jaynes, B. S.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1986, 1694. (m) Cho, S. H.; Liebeskind, L. S. J. Org. Chem. 1987, 52, 2631. (n) Semmelhack, M. F.; Ho, S.; Steigerwald, M.; Lee, M. C. J. Am. Chem. Soc. 1987, 109, 4397. (o) Brancour, C.; Fukuyama, T.; Ohta, Y.; Ryu, I.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Chem. Commun. 2010, 46, 5470. (p) Jiang, G.-J.; Fu, X.-F.; Li, Q.; Yu, Z.-X. Org. Lett. 2012, 14, 692. (q) Li, X.; Song, W.; Tang, W. J. Am. Chem. Soc. 2013, 135, 16797. (r) Fukuyama, T.; Ohta, Y.; Brancour, C.; Miyagawa, K.; Ryu, I.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Chem.-Eur. J. 2012, 18, 7243. (s) Farley, C. M.; Sasakura, K.; Zhou, Y.-Y.; Kanale, V. V.; Uyeda, C. J. Am. Chem. Soc. 2020, 142, 4598. [9] (a) Jiao, L.; Lin, M.; Zhuo, L.-G.; Yu, Z.-X. Org. Lett. 2010, 12, 2528. (b) Mazumder, S.; Shang, D.; Negru, D. E.; Baik, M.-H.; Evans, P. A. J. Am. Chem. Soc. 2012, 134, 20569. (c) Kim, S.; Chung, Y. K. Org. Lett. 2014, 16, 4352. (d) Wang, J.; Hong, B.; Hu, D.; Kadonaga, Y.; Tang, R.; Lei, X. J. Am. Chem. Soc. 2020, 142, 2238. [10] Selected reviews for metal-catalyzed[2+2+2] reactions:(a) Vollhardt, K. P. C. Angew. Chem., Int. Ed. 1984, 23, 539. (b) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307. (c) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741. (d) Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2011, 40, 3430. (e) Shibata, T.; Tsuchikama, K. Org. Biomol. Chem. 2008, 6, 1317. (f) Li, C.; Zhang, H.; Feng, J.; Zhang, Y.; Wang, J. Org. Lett. 2010, 12, 3082. (g) Shaw, M. H.; Melikhova, E. Y.; Kloer, D. P.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2013, 135, 4992. [11] (a) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199. (b) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446. (c) Fürstner, A. Top. Catal. 1997, 4, 285. (d) Donohoe, T. J.; Orr, A. J.; Bingham, M. Angew. Chem., Int. Ed. 2006, 45, 2664. (e) Maier, M. E. Angew. Chem., Int. Ed. 2000, 39, 2073. (f) Michaut, A.; Rodriguez, J. Angew. Chem., Int. Ed. 2006, 45, 5740. [12] Hu, Y.-J.; Li, L.-X.; Han, J.-C.; Min, L.; Li, C.-C. Chem. Rev. 2020, 120, 5910. [13] (a) Liang, Y.; Jiang, X.; Yu, Z.-X. Chem. Commun. 2011, 47, 6659. (b) Liang, Y.; Jiang, X.; Fu, X.-F.; Ye, S.; Wang, T.; Yuan, J.; Wang, Y.; Yu, Z.-X. Chem.-Asian J. 2012, 7, 593. [14] (a) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95. (b) Galli, C.; Mandolini, L. Eur. J. Org. Chem. 2000, 2000, 3117. [15] Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. [16] Yu, Z.-X.; Wang, Y.; Wang, Y. Chem.-Asian J. 2010, 5, 1072. [17] (a) Reed, H. W. B. J. Chem. Soc. 1954, 1931. (b) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67, 426. [18] Wender, P. A.; Ihle, N. C. J. Am. Chem. Soc. 1986, 108, 4678. [19] Park, J. W.; Park, J. E.; Park, J. H.; Hong, M. R.; Kim, S. M.; Chung, Y. K.; Kim, C. H. Synlett 2016, 27, 455. [20] Llorente, N.; Fernández-Pérez, H.; Bauzá, A.; Frontera, A.; Vidal-Ferran, A. Catal. Sci. Technol. 2018, 8, 5251. [21] (a) tom Dieck, H.; Dietrich, J. Chem. Ber. 1984, 117, 694. (b) tom Dieck, H.; Dietrich, J. Angew.Chem., Int. Ed. 1985, 24, 781. (c) Mallien, M.; Haupt, E. T. K.; tom Dieck, H. Angew. Chem., Int. Ed. 1988, 27, 1062. [22] Lee, H.; Campbell, M. G.; Sánchez, R. H.; Börgel, J.; Raynaud, J.; Parker, S. E.; Ritter, T. Organometallics 2016, 35, 2923. [23] Kennedy, C. R.; Zhong, H. Y.; Macaulay, R. L.; Chirik, P. J. J. Am. Chem. Soc. 2019, 141, 8557. [24] (a) Braconi, E.; Götzinger, A. C.; Cramer, N. J. Am. Chem. Soc. 2020, 142, 19819. (b) Baldenius, K.-U.; tom Dieck, H.; König, W. A.; Icheln, D.; Runge, T. Angew. Chem., Int. Ed. 1992, 31, 305. [25] Selected reviews for metal-catalyzed C-C bond activation of strained rings:(a) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100. (b) Ruhland, K. Eur. J. Org. Chem. 2012, 2012, 2683. (c) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410. (d) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (e) Cleavage of Carbon-Carbon Single Bonds by Transition Metals, Eds.:Murakami, M.; Chatani, N., Wiley-VCH, Weinheim, Germany, 2016. (f) Dong, G. C-C Bond Activation, In Topics in Current Chemistry, Eds.:Bayley, H.; Houk, K. N.; Hughes, G.; Hunter, C. A.; Ishihara, K.; Krische, M. J.; Lehn, J.-M.; Luque, R.; Olivucci, M.; Siegel, J. S.; Thiem, J.; Venturi, M.; Wong, C.-H.; Wong, H. N. C; You, S.-L.; Yam, V. W.-W.; Yan, C. Springer Verlag, Berlin and Heidelberg, Germany, 2014, DOI:10.1007/978-3-642-55055-3. (g) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117. (h) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404. (i) Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40, 1423(in Chinese). (代洪雪, 吴芬, 白大昌, 有机化学, 2020, 40, 1423. [26] (a) Evans, J. A.; Everitt, G. F.; Kemmitt, R. D. W.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1973, 158. (b) Liebeskind, L. S.; Baysdon, S. L.; South, M. S.; Blount, J. F. J. Organomet. Chem. 1980, 202, C73. (c) Liebeskind, L. S.; Baysdon, S. L.; South, M. S.; Iyer, S.; Leeds, J. P. Tetrahedron 1985, 41, 5839. (d) Huffman, M. A.; Liebeskind, L. S.; Pennington, W. T. Organometallics 1990, 9, 2194. (e) Masuda, Y.; Hasegawa, M.; Yamashita, M.; Nozaki, K.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 7142. (f) Okumura, S.; Sun, F.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2017, 139, 12414. (g) Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2012, 51, 7567. (h) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005. (i) Deng, L.; Chen, M.; Dong, G. J. Am. Chem. Soc. 2018, 140, 9652. (j) Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P. J. Am. Chem. Soc. 2015, 137, 8274. (k) Xu, T.; Savage, N. A.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 1891. (l) Chen, P.-H.; Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 1674. (m) Sun, T. W.; Zhang, Y.; Qiu, B.; Wang, Y.; Qin, Y.; Dong, G.; Xu, T. Angew. Chem., Int. Ed. 2018, 57, 2859. (n) Deng, L.; Xu, T.; Li, H.; Dong, G. J. Am. Chem. Soc. 2016, 138, 369. (o) Chen, P.-H.; Sieber, J.; Senanayake, C. H.; Dong, G. Chem. Sci. 2015, 6, 5440. (p) Zhu, Z.; Li, X.; Chen, S.; Chen, P.-H.; Billett, B. A.; Huang, Z.; Dong, G. ACS Catal. 2018, 8, 845. (q) Xu, Z.-Y.; Zhang, S.-Q.; Liu, J.-R.; Chen, P.-P.; Li, X.; Yu, H.-Z.; Hong, X.; Fu, Y. Organometallics 2018, 37, 592. (r) Bender, M.; Turnbull, B. W. H.; Ambler, B. R.; Krische, M. J. Science 2017, 357, 779. (s) Ambler, B. R.; Turnbull, B. W. H.; Suravarapu, S. R.; Uteuliyev, M. M.; Huynh, N. O.; Krische, M. J. J. Am. Chem. Soc. 2018, 140, 9091. (t) Deng, L.; Dong, G. Trends in Chem. 2020, 2, 183. [27] Juliá-Hernández, F.; Ziadi, A.; Nishimura, A.; Martin, R. Angew. Chem., Int. Ed. 2015, 54, 9537. [28] Yang, S.; Xu, Y.; Li, J. Org. Lett. 2016, 18, 6244. [29] Zou, H.; Wang, Z.-L.; Huang G. Chem.-Eur J. 2017, 23, 12593. [30] Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T. Liebigs Ann. Chem. 1948, 560, 1. [31] (a) Wender, P. A.; Christy, J. P. J. Am. Chem. Soc. 2007, 129, 13402. (b) Wender, P. A.; Christy, J. P.; Lesser, A. B.; Gieseler, M. T. Angew. Chem., Int. Ed. 2009, 48, 7687. [32] Chai, Z.; Wang, H.-F.; Zhao, G. Synlett 2009, 11, 1785. [33] Nasrallah, D. J.; Croatt, M. P. Eur. J. Org. Chem. 2014, 2014, 3767. [34] Greco, A.; Carbonar, A.; Dall'Asta, G. J. Org. Chem. 1970, 35, 271. [35] Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2006, 128, 2166. [36] Tao, J.-Y.; Fang, D.-C.; Chass, G. A. Phys. Chem. Chem. Phys. 2012, 14, 6937. [37] Lainhart, B. C.; Alexanian, E. J. Org. Lett. 2015, 17, 1284. [38] Gilbertson, S. R.; DeBoef, B. J. Am. Chem. Soc. 2002, 124, 8784. [39] DeBoef, B.; Counts, W. R.; Gilbertson, S. R. J. Org. Chem. 2007, 72, 799. [40] Canlas, G. M. R.; Gilbertson, S. R. Chem. Commun. 2014, 50, 5007. [41] (a) Evans, P. A.; Robinson, J. E.; Baum, E. W.; Fazal, A. N. J. Am. Chem. Soc. 2002, 124, 8782. (b) Evans, P. A.; Baum, E. W. J. Am. Chem. Soc. 2004, 126, 11150. (c) Evans, P. A.; Baum, E. W.; Fazal, A. N.; Pink, M. Chem. Commun. 2005, 63. [42] Wender, P. A.; Christy, J. P. J. Am. Chem. Soc. 2006, 128, 5354. [43] (a) Hilt, G.; Janikowski, J. Angew. Chem., Int. Ed. 2008, 47, 5243. (b) Varela, J. A.; Castedo, L.; Saá, C. Org. Lett. 2003, 5, 2841. [44] Yamasaki, R.; Ohashi, M.; Maeda, K.; Kitamura, T.; Nakagawa, M.; Kato, K.; Fujita, T.; Kamura, R.; Kinoshita, K.; Masu, H.; Azumaya, I.; Ogoshi, S.; Saito, S. Chem.-Eur J. 2013, 19, 3415. [45] Jiménez, T.; Carreras, J.; Ceccon, J.; Echavarren, A. M. Org. Lett. 2016, 18, 1410. [46] Davis, R. E.; Dodds, T. A.; Hseu, T. H.; Wagnon, J. C.; Devon, T.; Tancrede, J.; McKennis, J. S.; Pettit, R. J. Am. Chem. Soc. 1974, 96, 7562. [47] D'yakonov, V. A.; Kadikova, G. N.; Dzhemilev, U. M. Russ. Chem. Rev. 2018, 87, 797. [48] (a) Mach, K.; Antropiusová, H.; Sedmera, P.; Hanuš, V.; Tureček, F. J. Chem. Soc., Chem. Commun. 1983, 805. (b) Mach, K.; Antropiusová, H.; Petrusová, L.; Hanuš, V.; Tureček, F.; Sedmera, P. Tetrahedron 1984, 40, 3295. [49] D'yakonov, V. A.; Kadikova, G. N.; Dzhemilev, U. M. Tetrahedron Lett. 2011, 52, 2780. [50] D'yakonov, V. A.; Kadikova, G. N.; Khalilov, L. M.; Dzhemilev, U. M. Russ. J. Org. Chem. 2013, 49, 1139. [51] Dzhemilev, U. M.; Kadikova, G. N.; Kolokol'tsev, D. I.; D'yakonov, V. A. Tetrahedron 2013, 69, 4609. [52] (a) D'yakonov, V. A.; Kadikova, G. N.; Kolokol'tsev, D. I.; Ramazanov, I. R.; Dzhemilev, U. M. J. Organomet. Chem. 2015, 794, 23. (b) D'yakonov, V. A.; Kadikova, G. N.; Kolokol'tsev, D. I.; Ramazanov, I. R.; Dzhemilev, U. M. Eur. J. Org. Chem. 2015, 2015, 4464. (c) D'yakonov, V. A.; Kadikova, G. N.; Nasretdinov, R. N.; Kolokol'tsev, D. I.; Dzhemilev, U. M. Tetrahedron Lett. 2017, 58, 1714. (d) D'yakonov, V. A.; Kadikova, G. N.; Khalilov, L. M.; Dzhemilev, U. M. Russ. J. Org. Chem. 2018, 54, 832. [53] Achard, M.; Tenaglia, A.; Buono, G. Org. Lett. 2005, 7, 2353. [54] Achard, M.; Mosrin, M.; Tenaglia, A.; Buono, G. J. Org. Chem. 2006, 71, 2907. [55] Clavier, H.; Le Jeune, K.; de Riggi, I.; Tenaglia, A.; Buono, G. Org. Lett. 2011, 13, 308. [56] (a) D'yakonov, V. A.; Kadikova, G. N.; Gazizullina, G. F.; Khalilov, L. M.; Dzhemilev, U. M. Tetrahedron Lett. 2015, 56, 2005. (b) D'yakonov, V. A.; Kadikova, G. N.; Gazizullina, G. F.; Dzhemilev, U. M. Russ. Chem. Bull. 2016, 65, 200. [57] D'yakonov, V. A.; Kadikova, G. N.; Gazizullina, G. F.; Dzhemilev, U. M. ChemistrySelect 2018, 3, 6221. [58] (a) D'yakonov, V. A.; Kadikova, G. N.; Nasretdinov,R. N.; Dzhemileva, L. U.; Dzhemilev, U. M. Eur. J. Org. Chem. 2020, 623. (b) Kadikova, G. N.; D'yakonov, V. A.; Nasretdinov, R. N.; Dzhemileva, L. U.; Dzhemilev, U. M. Mendeleev Commun. 2020, 30, 318. [59] Oonishi, Y.; Hosotani, A.; Sato, Y. J. Am. Chem. Soc. 2011, 133, 10386. [60] Oonishi, Y.; Hosotani, A.; Sato, Y. Angew. Chem., Int. Ed. 2012, 51, 11548. [61] Liu, T.; Han, L.; Han, S.; Bi, S. Organometallics 2015, 34, 280. [62] (a) Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470. (b) Shi, F.-Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503. (c) Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-X. Chem.-Eur J. 2008, 14, 4361. (d) Liang, Y.; Zhou, H.; Yu, Z.-X. J. Am. Chem. Soc. 2009, 131, 17783. (e) Liang, Y.; Liu, S.; Yu, Z.-X. Synlett 2009, 905. (f) Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007, 48, 3617. (g) González, I.; Pla-Quintana, A.; Roglans, A.; Dachs, A.; Solà, M.; Parella, T.; Farjas, J.; Roura, P.; Lloveras, V.; Vidal-Gancedo, J. Chem. Commun. 2010, 46, 2944. (h) Zhao, L.; Wen, M.; Wang, Z.-X. Eur. J. Org. Chem. 2012, 19, 3587. [63] Faustino, H.; Alonso, I.; Mascareñas, J. L.; López, F. Angew. Chem., Int. Ed. 2013, 52, 6526. [64] Faustino, H.; Bernal, P.; Castedo, L.; López, F.; Mascareñas, J. L. Adv. Synth. Catal. 2012, 354, 1658. [65] (a) Rigby, J. H.; Henshilwood, J. A. J. Am. Chem. Soc. 1991, 113, 5122. (b) Rigby, J. H.; Ateeq, H. S.; Charles, N. R.; Henshilwood, J. A.; Short, K. M.; Sugathapala, P. M. Tetrahedron 1993, 49, 5495. (c) Rigby, J. H.; Ahmed, G.; Ferguson, M. D. Tetrahedron Lett. 1993, 34, 5397. (d) Rigby, J. H.; Sandanayaka, V. P. Tetrahedron Lett. 1993, 34, 935. (e) Rigby, J. H.; Pigge, F. C.; Ferguson, M. D. Tetrahedron Lett. 1994, 35, 8131. (f) Rigby, J. H.; Sugathapala, P.; Heeg, M. J. J. Am. Chem. Soc. 1995, 117, 8851. (g) Rigby, J. H.; Kondratenko, M. A.; Fiedler, C. Org. Lett. 2000, 2, 3917. (h) Rigby, J. H.; Laurent, S. B.; Kamal, Z.; Heeg, M. J. Org. Lett. 2008, 10, 5609. [66] Rigby, J. H.; Kirova-Snover, M. Tetrahedron Lett. 1997, 38, 8153. [67] De, S.; Misra, S.; Rigby, J. H. Org. Lett. 2015, 17, 3230. [68] Magauer, T.; Mulzer, J.; Tiefenbacher, K. Org. Lett. 2009, 11, 5306. [69] Yao, Z.-K.; Li, J.; Yu, Z.-X. Org. Lett. 2011, 13, 134. [70] Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 10060. [71] Jiang, G.-J.; Fu, X.-F.; Li, Q.; Yu, Z.-X. Org. Lett. 2012, 14, 692. [72] Fu, X.-F.; Xiang, Y.; Yu, Z.-X. Chem.-Eur J. 2015, 21, 4242. [73] Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124, 2876. [74] Wang, Y.; Yu, Z.-X. Acc. Chem. Res. 2015, 48, 2288. [75] Fan, X.; Zhuo, L.-G.; Tu, Y. Q.; Yu, Z.-X. Tetrahedron 2009, 65, 4709. [76] Jiao, L.; Yuan, C.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 4421. [77] Yuan, C.; Jiao, L.; Yu, Z.-X. Tetrahedron Lett. 2010, 51, 5674. [78] (a) Schuda, P. F.; Phillips, J. L.; Morgan, T. M. J. Org. Chem. 1986, 51, 2742. (b) Nishida, M.; Iseki, K.; Shibasaki, M.; Ikegami, S. Chem. Pharm. Bull. 1990, 38, 3230. (c) Banwell, M. G.; Austin, K. A. B.; Willis, A. C. Tetrahedron 2007, 63, 6388. [79] Fan, X.; Liu, C.-H.; Yu, Z.-X. Rhodium(I)-Catalyzed Cycloadditions Involving Vinylcyclopropanes and Their Derivatives. In Rhodium Catalysis in Organic Synthesis, Ed.:Tanaka, K., Wiley-VCH, Weinheim, Germany, 2019, pp. 229~276. |
[1] | Huakun Wang, Xiaolong Ren, Yining Xuan. Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 251-258. |
[2] | Hongqiong Zhao, Miao Yu, Dongxue Song, Qi Jia, Yingjie Liu, Yubin Ji, Ying Xu. Progress on Decarboxylation and Hydroxylation of Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 70-84. |
[3] | Mengzhu Li, Boying Meng, Wenjie Lan, Bin Fu. Synthesis of 2,3-Disubstituted Dihydrobenzofurans from o-Quinone Methides and Sulfur Ylides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 195-203. |
[4] | Hu Ma, Danfeng Huang, Kehu Wang, Duoduo Tang, Yang Feng, Yuanyuan Reng, Junjiao Wang, Yulai Hu. Synthesis of 3-Trifluoromethylpyrazole Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3257-3267. |
[5] | Zuliang Chen, Yingjing Wei, Junliang Zhang. Recent Advances in Cycloaddition Reactions of Donor-Acceptor Aziridines via Carbon-Carbon Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3078-3088. |
[6] | Yi Wang, Jian Zhang, Yangzi Liu, Xiaoyan Luo, Weiping Deng. Palladium-Catalyzed Asymmetric [3+4] Cycloadditions for the Construction of Cyclohepta[b]indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2864-2877. |
[7] | Xiaojing Hu, Feixiang Guo, Runqing Zhu, Bingqi Zhou, Tao Zhang, Lizhen Fang. Synthesis of p-Alkoxy Phenol and Its Application after Dearomatization [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2239-2244. |
[8] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
[9] | Deliang Kong, Wen Dai, Yiling Zhao, Yilin Chen, Hongping Zhu. Study on Oxidative Cycloaddition Reactions of Amidinatoboryl-aminosilylenes toward Ketone and Diketone Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1843-1851. |
[10] | Xingzhou Liu, Mingjia Yu, Jianhua Liang. Research Progress on the Synthesis of Protoberberine Skeleton and Its Anti-inflammatory Activity [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1325-1340. |
[11] | Fang Wei, Xin Yu, Qiang Xiao. Advances in C—N3 Retention Reactions Involving Organic Azides [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1365-1385. |
[12] | Haiqing Wang, Shuang Yang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxybenzyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 974-999. |
[13] | Kongchuan Wu, Kaihong Lu, Jianbin Lin, Huijun Zhang. Research Progress in Ortho-C—H Bond Functionalization of Rylene Diimides [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1000-1011. |
[14] | Hairui Jia, Zaozao Qiu. Recent Advances in Transition Metal-Catalyzed B—H Bond Activation for Synthesis of o-Carborane Derivatives with B—Heteroatom Bond [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1045-1068. |
[15] | Chunbo Dai, Siqi Xia, Xiaoyu Chen, Limin Yang. N-Heterocyclic Carbene (NHC)-Catalyzed [4+3] Cycloaddition to Synthesize 4-Aminobenzoheptenolactons [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1084-1090. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||