Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (9): 3431-3447.DOI: 10.6023/cjoc202103046 Previous Articles Next Articles
REVIEWS
收稿日期:
2021-03-25
修回日期:
2021-04-28
发布日期:
2021-06-17
通讯作者:
王超, 宗利利
基金资助:
Haimeng Zhua, Chao Wangb(), Lili Zonga()
Received:
2021-03-25
Revised:
2021-04-28
Published:
2021-06-17
Contact:
Chao Wang, Lili Zong
Supported by:
Share
Haimeng Zhu, Chao Wang, Lili Zong. Progress on Biological Activity Study and Enantioselective Synthesis of Sulfoxides[J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3431-3447.
[1] |
Pattillo, C. C.; Strambeanu, I. I.; Calleja, P.; Vermeulen, N. A.; Mizuno, T.; White, M. C. J. Am. Chem. Soc. 2016, 138, 1265.
doi: 10.1021/jacs.5b11294 |
[2] |
Khiar, N.; Fernández, I.; Alcudia, F. Tetrahedron Lett. 1993, 34, 123.
|
[3] |
Xue, F.; Li, X.; Wan, B. J. Org. Chem. 2011, 76, 7256.
doi: 10.1021/jo2011472 |
[4] |
Du, L.; Cao, P.; Xing, J.; Lou, Y.; Jiang, L.; Li, L.; Liao, J. Angew. Chem. Int. Ed. 2013, 52, 4207.
doi: 10.1002/anie.201209485 |
[5] |
James, B. R.; McMillan, R. S. Can. J. Chem. 1977, 55, 3927.
doi: 10.1139/v77-556 |
[6] |
Trost, B. M.; Rao, M. Angew. Chem. Int. Ed. 2015, 54, 5026.
doi: 10.1002/anie.v54.17 |
[7] |
Jia, T.; Wang, M.; Liao, J. Top. Curr. Chem. 2019, 377, 8.
|
[8] |
Pulis, A. P.; Procter, D. J. Angew. Chem. Int. Ed. 2016, 55, 9842.
doi: 10.1002/anie.201601540 |
[9] |
Zeng, J.; Liu, Y.; Chen, W.; Zhao, X.; Meng, L.; Wan, Q. Top. Curr. Chem. 2018, 376, 27.
|
[10] |
Salom-Roig, X.; Bauder, C. Synthesis 2020, 52, 964.
doi: 10.1055/s-0039-1690803 |
[11] |
Chen, J.; Chen, J.; Lang, F.; Zhang, X.; Cun, L.; Zhu, J.; Deng, J.; Liao, J. J. Am. Chem. Soc. 2010, 132, 4552.
doi: 10.1021/ja1005477 pmid: 20353203 |
[12] |
Calabro, K.; Jennings, L. K.; Lasserre, P.; Doohan, R.; Rodrigues, D.; Reyes, F.; Ramos, C.; Thomas, O. P. J. Org. Chem. 2020, 85, 14026.
doi: 10.1021/acs.joc.0c02060 pmid: 33090805 |
[13] |
Yuan, W. H.; Teng, M. T.; Yun, Y. F.; Jiang, N.; Ma, L.; Sun, S. S.; Yuan, B.; Tang, J.; Wu, Q. Y.; Li, Q.; Zhang, P.; Morris-Natschke, S. L.; Lee, K. H.; Talarolactone, A. J. Nat. Prod. 2020, 83, 1716.
doi: 10.1021/acs.jnatprod.0c00024 |
[14] |
Liu, D. H.; Sun, Y. Z.; Kurtan, T.; Mandi, A.; Tang, H.; Li, J.; Su, L.; Zhuang, C. L.; Liu, Z. Y.; Zhang, W. J. Nat. Prod. 2019, 82, 1274.
doi: 10.1021/acs.jnatprod.8b01053 |
[15] |
Chaudhary, N. K.; Pitt, J. I.; Lacey, E.; Crombie, A.; Vuong, D.; Piggott, A. M.; Karuso, P. J. Nat. Prod. 2018, 81, 1517.
doi: 10.1021/acs.jnatprod.7b00816 pmid: 29920099 |
[16] |
Lutz, C.; Simon, W.; Werner-Simon, S.; Pahl, A.; Muller, C. Angew. Chem. Int. Ed. 2020, 59, 11390.
doi: 10.1002/anie.v59.28 |
[17] |
Matinkhoo, K.; Pryyma, A.; Todorovic, M.; Patrick, B. O.; Perrin, D. M. J. Am. Chem. Soc. 2018, 140, 6513.
doi: 10.1021/jacs.7b12698 pmid: 29561592 |
[18] |
Siegert, M. J.; Knittel, C. H.; Sussmuth, R. D. Angew. Chem. Int. Ed. 2020, 59, 5500.
doi: 10.1002/anie.v59.14 |
[19] |
Surur, A. S.; Schulig, L.; Link, A. Arch. Pharm. 2019, 352, 1800248.
|
[20] |
Rafique, W.; Kramer, V.; Pardo, T.; Smits, R.; Spilhaug, M. M.; Hoepping, A.; Savio, E.; Engler, H.; Kuljs, R.; Amaral, H.; Riss, P. J. Acs Omega 2018, 3, 7567.
doi: 10.1021/acsomega.8b00975 pmid: 30087917 |
[21] |
Block, E.; Ahmad, S.; Jain, M. K.; Crecely, R. W.; Apitz-Castro, R.; Cruz, M. R. J. Am. Chem. Soc. 1984, 106, 8295.
doi: 10.1021/ja00338a049 |
[22] |
Fong, J.; Yuan, M.; Jakobsen, T. H.; Mortensen, K. T.; Delos Santos, M. M. S.; Chua, S. L.; Yang, L.; Tan, C. H.; Nielsen, T. E.; Givskov, M. J. Med. Chem. 2017, 60, 215.
doi: 10.1021/acs.jmedchem.6b01025 |
[23] |
Silva, F.; Khokhar, S. S.; Williams, D. M.; Saunders, R.; Evans, G. J. S.; Graz, M.; Wirth, T. Angew. Chem. Int. Ed. 2018, 57, 12290.
doi: 10.1002/anie.201808605 |
[24] |
Raynbird, M. Y.; Silva, F.; Smallman, H.; Khokhar, S. S.; Neef, D.; Evans, G. J. S.; Wirth, T. Chem. Eur. J. 2020, 26, 8363.
doi: 10.1002/chem.v26.38 |
[25] |
Kaschula, C. H.; Hunter, R.; Stellenboom, N.; Caira, M. R.; Winks, S.; Ogunleye, T.; Richards, P.; Cotton, J.; Zilbeyaz, K.; Wang, Y.; Siyo, V.; Ngarande, E.; Parker, M. I. Eur. J. Med. Chem. 2012, 50, 236.
doi: 10.1016/j.ejmech.2012.01.058 |
[26] |
Stellenboom, N. J. Turk. Chem. Soc., Sect. A 2019, 6, 143.
|
[27] |
Cuomo, V.; Luciano, F. B.; Meca, G.; Ritieni, A.; Mañes, J. CyTA-J. Food 2015, 13, 361.
doi: 10.1080/19476337.2014.984337 |
[28] |
Nastruzzi, C.; Cortesi, R.; Esposito, E.; Menegatti, E.; Leoni, O.; Iori, R.; Palmieri, S. J. Agric. Food Chem. 1996, 44, 1014.
doi: 10.1021/jf9503523 |
[29] |
Fahey, J. W.; Holtzclaw, W. D.; Wehage, S. L.; Wade, K. L.; Stephenson, K. K.; Talalay, P. PLoS One 2015, 10, e0140963.
doi: 10.1371/journal.pone.0140963 |
[30] |
Parfenova, H.; Liu, J.; Hoover, D. T.; Fedinec, A. L. J. Cereb. Blood Flow Metab. 2019, 40, 1987.
doi: 10.1177/0271678X19878284 |
[31] |
Tarozzi, A.; Angeloni, C.; Malaguti, M.; Morroni, F.; Hrelia, S.; Hrelia, P. Oxid. Med. Cell. Longevity 2013, 2013, 415078.
|
[32] |
Kakizaki, T.; Kitashiba, H.; Zou, Z.; Li, F.; Fukino, N.; Ohara, T.; Nishio, T.; Ishida, M. Plant Physiol. 2017, 173, 1583.
doi: 10.1104/pp.16.01814 |
[33] |
Wang, H.; Wang, F.; Wu, S.; Liu, Z.; Li, T.; Mao, L.; Zhang, J.; Li, C.; Liu, C.; Yang, Y. Chem. Biol. Interact. 2018, 281, 11.
doi: 10.1016/j.cbi.2017.12.017 |
[34] |
Tian, X.; Gao, J.; Liu, M.; Lei, Y.; Wang, F.; Chen, J.; Chu, P.; Gao, J.; Long, F.; Liang, M.; Long, X.; Chu, H.; Liu, C.; Li, X.; Sun, Q.; Li, G.; Yang, Y. J. Med. Chem. 2020, 63, 3881.
doi: 10.1021/acs.jmedchem.9b01663 |
[35] |
Ning, X.; Guo, Y.; Wang, X.; Ma, X.; Tian, C.; Shi, X.; Zhu, R.; Cheng, C.; Du, Y.; Ma, Z.; Zhang, Z.; Liu, J. J. Med. Chem. 2014, 57, 4302.
doi: 10.1021/jm500258v |
[36] |
Ning, X.; Yuan, M.; Guo, Y.; Tian, C.; Wang, X.; Zhang, Z.; Liu, J. J. Enzyme Inhib. Med. Chem. 2016, 31, 464.
|
[37] |
Seto, M.; Aikawa, K.; Miyamoto, N.; Aramaki, Y.; Kanzaki, N.; Takashima, K.; Kuze, Y.; Iizawa, Y.; Baba, M.; Shiraishi, M. J. Med. Chem. 2006, 49, 2037.
doi: 10.1021/jm0509703 |
[38] |
Song, S.; Tian, Q.; Wu, Y.; Zhao, M.; Wang, C.; Cai, J.; Wang, L.; Wang, J.WO 2019149089, 2019.
|
[39] |
Luo, Y.; Long, C.; Ba, Y.; Chen, X.; Chen, S.WO 2018103757, 2018.
|
[40] |
Grinev, A. N.; Pershin, G. N. WO 9008135, 1990.
|
[41] |
Leneva, I. A. WO 2007075102, 2007.
|
[42] |
Chai, H.; Zhao, Y.; Zhao, C.; Gong, P. Biorg. Med. Chem. 2006, 14, 911.
doi: 10.1016/j.bmc.2005.08.041 |
[43] |
Chai, H.-F.; Liang, X.-X.; Li, L.; Zhao, C.-S.; Gong, P.; Liang, Z.-J.; Zhu, W.-L.; Jiang, H.-L.; Luo, C. J. Mol. Model. 2011, 17, 1831.
doi: 10.1007/s00894-010-0873-7 |
[44] |
Ivashchenko, A. V.; Yamanushkin, P. M.; Mit'kin, O. D.; Kisil, V. M.; Korzinov, O. M.; Vedenskii, V. Y.; Leneva, I. A.; Bulanova, E. A.; Bychko, V. V.; Okun, I. M. Pharm. Chem. J. 2014, 47, 636.
doi: 10.1007/s11094-014-1024-8 |
[45] |
Di Mola, A.; Peduto, A.; La Gatta, A.; Delang, L.; Pastorino, B.; Neyts, J.; Leyssen, P.; de Rosa, M.; Filosa, R. Bioorg. Med. Chem. 2014, 22, 6014.
doi: 10.1016/j.bmc.2014.09.013 |
[46] |
Scuotto, M.; Abdelnabi, R.; Collarile, S.; Schiraldi, C.; Delang, L.; Massa, A.; Ferla, S.; Brancale, A.; Leyssen, P.; Neyts, J.; Filosa, R. Bioorg. Med. Chem. 2017, 25, 327.
|
[47] |
Gerrard, P.; Malcolm, R. Neuropsychiatr. Dis. Treat. 2007, 3, 349.
|
[48] |
Loland, C. J.; Mereu, M.; Okunola, O. M.; Cao, J.; Prisinzano, T. E.; Mazier, S.; Kopajtic, T.; Shi, L.; Katz, J. L.; Tanda, G.; Newman, A. H. Biol. Psychiatry. 2012, 72, 405.
doi: 10.1016/j.biopsych.2012.03.022 |
[49] |
Abramyan, A. M.; Stolzenberg, S.; Li, Z.; Loland, C. J.; Noé, F.; Shi, L. ACS Chem. Neurosci. 2017, 8, 1735.
doi: 10.1021/acschemneuro.7b00094 pmid: 28441487 |
[50] |
Cao, J.; Slack, R. D.; Bakare, O. M.; Burzynski, C.; Rais, R.; Slusher, B. S.; Kopajtic, T.; Bonifazi, A.; Ellenberger, M. P.; Yano, H.; He, Y.; Bi, G.-H.; Xi, Z.-X.; Loland, C. J.; Newman, A. H. J. Med. Chem. 2016, 59, 10676.
doi: 10.1021/acs.jmedchem.6b01373 |
[51] |
Rotolo, R. A.; Dragacevic, V.; Kalaba, P.; Urban, E.; Zehl, M.; Roller, A.; Wackerlig, J.; Langer, T.; Pistis, M.; De Luca, M. A.; Caria, F.; Schwartz, R.; Presby, R. E.; Yang, J.-H.; Samels, S.; Correa, M.; Lubec, G.; Salamone, J. D. Front Pharmacol. 2019, 10.
|
[52] |
Kalaba, P.; Ilić, M.; Aher, N. Y.; Dragačević, V.; Wieder, M.; Zehl, M.; Wackerlig, J.; Beyl, S.; Sartori, S. B.; Ebner, K.; Roller, A.; Lukic, N.; Beryozkina, T.; Gonzalez, E. R. P.; Neill, P.; Khan, J. A.; Bakulev, V.; Leban, J. J.; Hering, S.; Pifl, C.; Singewald, N.; Lubec, J.; Urban, E.; Sitte, H. H.; Langer, T.; Lubec, G. J. Med. Chem. 2020, 63, 391.
doi: 10.1021/acs.jmedchem.9b01938 |
[53] |
Suh, S.-H.; Kim, S.-J. WO 2020055166, 2020.
|
[54] |
Goundry, W. R. F.; Dai, K.; Gonzalez, M.; Legg, D.; O'Kearney- McMullan, A.; Morrison, J.; Stark, A.; Siedlecki, P.; Tomlin, P.; Yang, J. Org. Process Res. Dev. 2019, 23, 1333.
doi: 10.1021/acs.oprd.9b00075 |
[55] |
Dillon, M. T.; Bergerhoff, K. F.; Pedersen, M.; Whittock, H.; Crespo-Rodriguez, E.; Patin, E. C.; Pearson, A.; Smith, H. G.; Paget, J. T. E.; Patel, R. R.; Foo, S.; Bozhanova, G.; Ragulan, C.; Fontana, E.; Desai, K.; Wilkins, A. C.; Sadanandam, A.; Melcher, A.; McLaughlin, M.; Harrington, K. J. Clin. Cancer Res. 2019, 25, 3392.
doi: 10.1158/1078-0432.CCR-18-1821 |
[56] |
Di Carlo, F. J. Drug Metab. Rev. 1979, 10, 225.
pmid: 399459 |
[57] |
Freedman, H. H.; Fox, A. E.; Shavel, J.; Morrison, G. C. Proc. Soc. Exp. Biol. Med. 1972, 139, 909.
doi: 10.3181/00379727-139-36264 |
[58] |
Saitoh, M.; Kunitomo, J.; Kimura, E.; Iwashita, H.; Uno, Y.; Onishi, T.; Uchiyama, N.; Kawamoto, T.; Tanaka, T.; Mol, C. D.; Dougan, D. R.; Textor, G. P.; Snell, G. P.; Takizawa, M.; Itoh, F.; Kori, M. J. Med. Chem. 2009, 52, 6270.
doi: 10.1021/jm900647e |
[59] |
Hosie, A. M.; Baylis, H. A.; Buckingham, S. D.; Sattelle, D. B. Br. J. Pharmacol. 1995, 115, 909.
doi: 10.1111/bph.1995.115.issue-6 |
[60] |
Klimas, M. T.; Goldstein, J. M.; Trainor, D. A.; Jacobs, R. T.; Ohnmacht, C. J.; Roberts, R. A.; Yee, Y. K.; Terpko, M. O.; Thomas, S. P.; Cronk, L. A.; Frank, C. A.; Harris, G. D.; Hulsizer, J.; Lewis, J. J.; McLaren, F. M.; Mauger, R. C.; Morosky, G. D.; Ronkin, S. M.; Sienkewicz, P.; Sparks, R. B.; Ulatowski, T. G.; Wildonger, D. Bioorg. Med. Chem. Lett. 1995, 5, 1795.
doi: 10.1016/0960-894X(95)00298-8 |
[61] |
Hogan, P. J.; Hopes, P. A.; Moss, W. O.; Robinson, G. E.; Patel, I. Org. Process Res. Dev. 2002, 6, 225.
doi: 10.1021/op0101052 |
[62] |
Salillas, S.; Alías, M.; Michel, V.; Mahía, A.; Lucía, A.; Rodrigues, L.; Bueno, J.; Galano-Frutos, J. J.; De Reuse, H.; Velázquez- Campoy, A.; Carrodeguas, J. A.; Sostres, C.; Castillo, J.; Aínsa, J. A.; Díaz-de-Villegas, M. D.; Lanas, Á.; Touati, E.; Sancho, J. J. Med. Chem. 2019, 62, 6102.
doi: 10.1021/acs.jmedchem.9b00355 pmid: 31244111 |
[63] |
Pitchen, P.; France, C. J.; McFarlane, I. M.; Newton, C. G.; Thompson, D. M. Tetrahedron Lett 1994, 35, 485.
doi: 10.1016/0040-4039(94)85087-9 |
[64] |
Smith, C.; Ashton, M. J.; Bush, R. C.; Facchini, V.; Harris, N. V.; Hart, T. W.; Jordan, R.; MacKenzie, R.; Riddell, D. Bioorg. Med. Chem. Lett. 1996, 6, 47.
doi: 10.1016/0960-894X(95)00555-8 |
[65] |
Riddell, D.; Bright, C. P.; Burton, B. J.; Bush, R. C.; Harris, N. V.; Hele, D.; Moore, U. M.; Naik, K.; Parrott, D. P.; Smith, C.; Williams, R. J. Biochem. Pharmacol. 1996, 52, 1177.
pmid: 8937424 |
[66] |
Ozeki, Y.; Nagamura, Y.; Ito, H.; Unemi, F.; Kimura, Y.; Igawa, T.; Kambayashi, J.-i.; Takahashi, Y.; Yoshimoto, T. Br. J. Pharmacol. 1999, 128, 1699.
doi: 10.1038/sj.bjp.0702976 |
[67] |
Uno, T.; Ozeki, Y.; Koga, Y.; Chu, G.-N.; Okada, M.; Tamura, K.; Igawa, T.; Unemi, F.; Kido, M.; Nishi, T. Chem. Pharm. Bull. 1995, 43, 1724.
doi: 10.1248/cpb.43.1724 |
[68] |
Yoneda, T.; Tabata, H.; Tasaka, T.; Oshitari, T.; Takahashi, H.; Natsugari, H. J. Med. Chem. 2015, 58, 3268.
doi: 10.1021/acs.jmedchem.5b00289 |
[69] |
Makino, K.; Yoneda, T.; Ogawa, R.; Kanase, Y.; Tabata, H.; Oshitari, T.; Natsugari, H.; Takahashi, H. Tetrahedron Lett 2017, 58, 2885.
|
[70] |
Kubota, H.; Kakefuda, A.; Nagaoka, H.; Yamamoto, O.; Ikeda, K.; Takeuchi, M.; Shibanuma, T.; Isomura, Y. Chem. Pharm. Bull. 1998, 46, 242.
doi: 10.1248/cpb.46.242 |
[71] |
Rodriguez, S.; Haddad, N.; Frutos, R. P.; Grinberg, N.; Krishnamurthy, D.; Senanayake, C. H. Org. Process Res. Dev. 2017, 21, 444.
doi: 10.1021/acs.oprd.6b00400 |
[72] |
Boehringer Ingelheim Pharma GmbH & Co. KG EP1847543, 2007.
|
[73] |
Harrison, P. W. B.; Kenyon, J.; Phillips, H. J. Chem. Soc. 1926, 129, 2079.
doi: 10.1039/JR9262902079 |
[74] |
Andersen, K. K. Tetrahedron Lett. 1962, 3, 93.
|
[75] |
Pitchen, P.; Kagan, H. B. Tetrahedron Lett. 1984, 25, 1049.
doi: 10.1016/S0040-4039(01)80097-6 |
[76] |
Pitchen, P.; Dunach, E.; Deshmukh, M. N.; Kagan, H. B. J. Am. Chem. Soc. 1984, 106, 8188.
doi: 10.1021/ja00338a030 |
[77] |
Di Furia, F.; Modena, G.; Seraglia, R. Synthesis 1984, 325.
|
[78] |
Zeng, Q. L. Prog. Chem. 2007, 19, 745. (in Chinese).
|
( 曾庆乐, 化学进展, 2007, 19, 745.)
|
|
[79] |
Srour, H.; Le Maux, P.; Chevance, S.; Simonneaux, G. Coord. Chem. Rev. 2013, 257, 3030.
doi: 10.1016/j.ccr.2013.05.010 |
[80] |
Wojaczyńska, E.; Wojaczyński, J. Chem. Rev. 2010, 110, 4303.
doi: 10.1021/cr900147h pmid: 20415478 |
[81] |
Wojaczyńska, E.; Wojaczyński, J. Chem. Rev. 2020, 120, 4578.
doi: 10.1021/acs.chemrev.0c00002 pmid: 32347719 |
[82] |
Casnati, A.; Lanzi, M.; Cera, G. Molecules 2020, 25.
|
[83] |
Legros, J.; Bolm, C. Angew. Chem. Int. Ed. 2004, 43, 4225.
doi: 10.1002/(ISSN)1521-3773 |
[84] |
Wang, F.; Feng, L.; Dong, S.; Liu, X.; Feng, X. Chem. Commun. 2020, 56, 3233.
doi: 10.1039/D0CC00434K |
[85] |
Egami, H.; Katsuki, T. J. Am. Chem. Soc. 2007, 129, 8940.
doi: 10.1021/ja071916+ |
[86] |
Le Maux, P.; Simonneaux, G. Chem. Commun. 2011, 47, 6957.
doi: 10.1039/c1cc11675d |
[87] |
Salles, L.; Robert, F.; Semmer, V.; Jeannin, Y.; Bregeault, J. M. Bull. Soc. Chim. Fr. 1996, 133, 319.
|
[88] |
Zuwei, X.; Ning, Z.; Yu, S.; Kunlan, L. Science 2001, 292, 1139.
pmid: 11349143 |
[89] |
Chakravarthy, R. D.; Ramkumar, V.; Chand, D. K. Green Chem. 2014, 16, 2190.
doi: 10.1039/c3gc42245c |
[90] |
Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X.-Q.; Noyori, R. Tetrahedron 2001, 57, 2469.
doi: 10.1016/S0040-4020(01)00068-0 |
[91] |
Jahier, C.; Coustou, M.-F.; Cantuel, M.; McClenaghan, N. D.; Buffeteau, T.; Cavagnat, D.; Carraro, M.; Nlate, S. Eur. J. Inorg. Chem. 2011, 2011, 727.
|
[92] |
Jahier, C.; Touzani, R.; El Kadiri, S.; Nlate, S. Inorg. Chim. Acta 2016, 450, 81.
doi: 10.1016/j.ica.2016.05.019 |
[93] |
Zong, L.; Wang, C.; Moeljadi, A. M.; Ye, X.; Ganguly, R.; Li, Y.; Hirao, H.; Tan, C. H. Nat. Commun. 2016, 7, 13455.
doi: 10.1038/ncomms13455 |
[94] |
Ye, X. Y.; Moeljadi, A. M. P.; Chin, K. F.; Hirao, H.; Zong, L. L.; Tan, C. H. Angew. Chem. Int. Ed. 2016, 55, 7101.
doi: 10.1002/anie.201601574 |
[95] |
Colonna, S.; Pironti, V.; Drabowicz, J.; Brebion, F.; Fensterbank, L.; Malacria, M. Eur. J. Org. Chem. 2005, 2005, 1727.
doi: 10.1002/(ISSN)1099-0690 |
[96] |
Mojr, V.; Herzig, V.; Buděšínský, M.; Cibulka, R.; Kraus, T. Chem. Commun. 2010, 46, 7599.
doi: 10.1039/c0cc02562c |
[97] |
Liu, Z.-M.; Zhao, H.; Li, M.-Q.; Lan, Y.-B.; Yao, Q.-B.; Tao, J.-C.; Wang, X.-W. Adv. Synth. Catal. 2012, 354, 1012.
doi: 10.1002/adsc.201100810 |
[98] |
Liao, S.; Čorić, I.; Wang, Q.; List, B. J. Am. Chem. Soc. 2012, 134, 10765.
doi: 10.1021/ja3035637 |
[99] |
Zhang, S.; Li, G.; Li, L.; Deng, X.; Zhao, G.; Cui, X.; Tang, Z. ACS Catal. 2020, 10, 245.
doi: 10.1021/acscatal.9b04508 |
[100] |
Maczka, W.; Winska, K.; Grabarczyk, M. Catalysts 2018, 8, 27.
doi: 10.3390/catal8010027 |
[101] |
Ren, S.-M.; Liu, F.; Wu, Y.-Q.; Chen, Q.; Zhang, Z.-J.; Yu, H.-L.; Xu, J.-H. Biotechnol. Bioeng. 2021, 118: 737.
doi: 10.1002/bit.v118.2 |
[102] |
Xu, N.; Zhu, J.; Wu, Y.-Q.; Zhang, Y.; Xia, J.-Y.; Zhao, Q.; Lin, G.-Q.; Yu, H.-L.; Xu, J.-H. Org. Process Res. Dev. 2020, 24, 1124.
doi: 10.1021/acs.oprd.0c00115 |
[103] |
Chang, X. H.; Zhang, Q. L.; Guo, C. Angew. Chem. Int. Ed. 2020, 59, 12612.
doi: 10.1002/anie.v59.31 |
[104] |
Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 |
[105] |
Ghosh, M.; Shinde, V. S.; Rueping, M. Beilstein J. Org. Chem. 2019, 15, 2710.
doi: 10.3762/bjoc.15.264 |
[106] |
Firth, B. E.; Miller, L. L.; Mitani, M.; Rogers, T.; Lennox, J.; Murray, R. W. J. Am. Chem. Soc. 1976, 98, 8271.
doi: 10.1021/ja00441a069 |
[107] |
Komori, T.; Nonaka, T. J. Am. Chem. Soc. 1984, 106, 2656.
doi: 10.1021/ja00321a028 |
[108] |
O'Donnell, J. S.; Schwan, A. L. J. Sulfur Chem. 2004, 25, 183.
|
[109] |
Caupène, C.; Boudou, C.; Perrio, S.; Metzner, P. J. Org. Chem. 2005, 70, 2812.
doi: 10.1021/jo0478003 |
[110] |
Maitro, G.; Vogel, S.; Sadaoui, M.; Prestat, G.; Madec, D.; Poli, G. Org. Lett. 2007, 9, 5493.
doi: 10.1021/ol702343g |
[111] |
Gelat, F.; Jayashankaran, J.; Lohier, J.-F.; Gaumont, A.-C.; Perrio, S. Org. Lett. 2011, 13, 3170.
doi: 10.1021/ol2010962 |
[112] |
Gelat, F.; Lohier, J.-F.; Gaumont, A.-C.; Perrio, S. Adv. Synth. Catal. 2015, 357, 2011.
doi: 10.1002/adsc.v357.9 |
[113] |
Wu, C.; Berritt, S.; Liang, X.; Walsh, P. J. Org. Lett. 2019, 21, 960.
doi: 10.1021/acs.orglett.8b03943 |
[114] |
Bernoud, E.; Le Duc, G.; Bantreil, X.; Prestat, G.; Madec, D.; Poli, G. Org. Lett. 2010, 12, 320.
doi: 10.1021/ol902620t pmid: 20000488 |
[115] |
Jia, T.; Zhang, M.; McCollom, S. P.; Bellomo, A.; Montel, S.; Mao, J.; Dreher, S. D.; Welch, C. J.; Regalado, E. L.; Williamson, R. T.; Manor, B. C.; Tomson, N. C.; Walsh, P. J. Am. Chem. Soc. 2017, 139, 8337.
doi: 10.1021/jacs.7b03623 |
[116] |
Yu, H.; Li, Z.; Bolm, C. Org. Lett. 2018, 20, 2076.
doi: 10.1021/acs.orglett.8b00615 |
[117] |
Wang, L.; Chen, M.; Zhang, J. Org. Chem. Front. 2019, 6, 32.
doi: 10.1039/c8qo00914g |
[118] |
Amos, S. G. E.; Nicolai, S.; Gagnebin, A.; Le Vaillant, F.; Waser, J. J. Org. Chem. 2019, 84, 3687.
doi: 10.1021/acs.joc.9b00050 |
[119] |
Wang, L.; Chen, M.; Zhang, P.; Li, W.; Zhang, J. J. Am. Chem. Soc. 2018, 140, 3467.
doi: 10.1021/jacs.8b00178 pmid: 29420023 |
[120] |
Gelat, F.; Gaumont, A.-C.; Perrio, S. J. Sulfur Chem. 2013, 34, 596.
|
[121] |
Zong, L. L.; Ban, X.; Kee, C. W.; Tan, C. H. Angew. Chem. Int. Ed. 2014, 53, 11849.
doi: 10.1002/anie.201407512 |
[122] |
Yu, H.; Li, Z.; Bolm, C. Org. Lett. 2018, 20, 7104.
doi: 10.1021/acs.orglett.8b03046 |
[123] |
Yang, J. C.; Li, G. S.; Lu, C. W.; An, Y.; Gao, S. Chin. J. Org. Chem. 2018, 38, 3070.
doi: 10.6023/cjoc201805034 |
[124] |
Dai, W.; Shang, S.; Lv, Y.; Li, G.; Li, C.; Gao, S. ACS Catal. 2017, 7, 4890.
doi: 10.1021/acscatal.7b00968 |
[125] |
Nosek, V.; Misek, J. Angew. Chem. Int. Ed. 2018, 57, 9849.
doi: 10.1002/anie.v57.31 |
[126] |
Peng, L. T.; Wen, Y. M.; Chen, Y.; Yuan, Z. M.; Zhou, Y.; Cheng, X. L.; Chen, Y. Z.; Yang, J. W. ChemCatChem 2018, 10, 3284.
doi: 10.1002/cctc.201800279 |
[127] |
Zhu, Y.-C.; Li, Y.; Zhang, B.-C.; Zhang, F.-X.; Yang, Y.-N.; Wang, X.-S. Angew. Chem. Int. Ed. 2018, 57, 5129.
doi: 10.1002/anie.201801146 |
[128] |
Liu, W.; Yang, W.; Zhu, J.; Guo, Y.; Wang, N.; Ke, J.; Yu, P.; He, C. ACS Catal. 2020, 10, 7207.
doi: 10.1021/acscatal.0c02109 |
[129] |
Wimberger, L.; Kratz, T.; Bach, T. Synthesis 2019, 51, 4417.
doi: 10.1055/s-0039-1690034 |
[1] | Huakun Wang, Xiaolong Ren, Yining Xuan. Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 251-258. |
[2] | Shihang Yu, Jiawei Liu, Biyu An, Qinghua Bian, Min Wang, Jiangchun Zhong. Asymmetric Synthesis of the Contact Sex Pheromone of Neoclytus acuminatus acuminatus (Fabricius) [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 301-308. |
[3] | Yuchao Wang, Jinbiao Liu, Zhitao He. Palladium-Catalyzed Asymmetric Hydrofunctionalizations of Conjugated Dienes [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2614-2627. |
[4] | Tingyu Song, Ran Li, Lihua Huang, Shikun Jia, Guangjian Mei. Catalytic Asymmetric Synthesis of N—N Atropisomers [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1977-1990. |
[5] | Cheng Luo, Yanli Yin, Zhiyong Jiang. Recent Advances in Asymmetric Synthesis of P-Chiral Phosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1963-1976. |
[6] | Ling Meng, Jun Wang. Research Progress on Synthesis of Thioflavonoids [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 873-891. |
[7] | Huaiyuan Zhang, Nuo Xu, Rongping Tang, Xingli Shi. Recent Advances in Asymmetric Dearomatization Reactions Induced by Chiral Hypervalent Iodine Reagents [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3784-3805. |
[8] | Liu-Yang Pu, Zhiyue Li, Limin Li, Yucui Ma, Min Ma, Shengquan Hu, Zhengzhi Wu. Asymmetric Synthesis of (–)-Colchicine and Its Natural Analog (–)-N-Acetylcolchicine Methyl Ether [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 313-319. |
[9] | Yuanhao Mao, Yanfeng Gao, Zhiwei Miao. Research Progress on the Asymmetric Cyclization Synthesis of Seven-Membered Rings via Transition Metal Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 1904-1924. |
[10] | Ting Yao, Jiayan Li, Jiaming Wang, Changgui Zhao. Recent Advances for the Construction of Seven-Membered Ring Catalyzed by N-Heterocyclic Carbenes [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 925-944. |
[11] | Lihua Wang, Xushun Gong, Ting Lei, Shizhi Jiang. Research Progress on Asymmetric Synthesis of Flavanones [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 758-769. |
[12] | Xiuliang Cheng, Dong Li, Boxuan Yang, Yumei Lin, Lei Gong. Recent Advances in Visible-Light Photocatalytic Asymmetric Synthesis Enabled by Chiral Lewis Acids [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3335-3350. |
[13] | Xudong Hu, Xinliang Zhang, Wenbo Liu. Advances of Chiral Spiro Skeleton-Based Bisnitrogen Ligands in Transition-Metal Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3102-3117. |
[14] | Yiwen Su, Youquan Zou, Wenjing Xiao. Recent Advances in Photocatalytic Deracemization [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3201-3212. |
[15] | Nana Wang, Jingcheng Xu, Haibo Mei, Hiroki Moriwaki, Kunisuke Izawa, Vadim A. Soloshonok, Jianlin Han. Electrochemical Approaches for Preparation of Tailor-Made Amino Acids [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3034-3049. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||