Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (10): 3335-3350.DOI: 10.6023/cjoc202205032 Previous Articles     Next Articles

Special Issue: 不对称催化专辑

REVIEWS

手性Lewis酸催化的可见光不对称合成研究进展

成秀亮a, 李冬a, 杨博轩a, 林玉妹a, 龚磊a,b,*()   

  1. a 厦门大学化学化工学院 福建省化学生物学重点实验室 福建厦门 361005
    b 福建省能源材料科学与技术创新实验室(IKKEM) 福建厦门 361005
  • 收稿日期:2022-05-19 修回日期:2022-06-25 发布日期:2022-11-02
  • 通讯作者: 龚磊
  • 作者简介:
    †共同第一作者.
  • 基金资助:
    国家自然科学基金(22071209); 国家自然科学基金(22071206); 及国家高层次青年人才资助项目

Recent Advances in Visible-Light Photocatalytic Asymmetric Synthesis Enabled by Chiral Lewis Acids

Xiuliang Chenga, Dong Lia, Boxuan Yanga, Yumei Lina, Lei Gonga,b()   

  1. a College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005
    b Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian 361005
  • Received:2022-05-19 Revised:2022-06-25 Published:2022-11-02
  • Contact: Lei Gong
  • About author:
    †These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22071209); National Natural Science Foundation of China(22071206); National Youth Talent Support Program

In recent years, visible-light photocatalytic asymmetric synthesis has shown considerable potential in the mild and rapid construction of optically active organic molecules with structural diversity. Chiral Lewis acids (CLA), including chiral borane compounds, lanthanum complexes, first-row transition metal complexes, and chiral-at-iridium or rhodium complexes, have been established as one class of the most effective catalysts being capable of controlling the stereochemistry in photo-induced chemical transformations. The recent advances in this emerging field were presented by classifying the reactions into bifunctional CLA photocatalytic reactions and reactions enabled by dual catalysis with a CLA catalyst and an external photosensitizer, expecting that these studies will stimulate progress in organic synthesis, photocatalysis and asymmetric catalysis.

Key words: visible light photocatalysis, asymmetric synthesis, chiral Lewis acid, cooperative catalysis, bifunctional catalysis