Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (4): 1179-1187.DOI: 10.6023/cjoc202109031 Previous Articles Next Articles
Original article
收稿日期:
2021-09-21
修回日期:
2021-11-06
发布日期:
2021-12-08
通讯作者:
刘春艳
基金资助:
JIan Xiao, Zhiying Wu, Ziyi Chen, Pengfei Zhao
Received:
2021-09-21
Revised:
2021-11-06
Published:
2021-12-08
Supported by:
Share
JIan Xiao, Zhiying Wu, Ziyi Chen, Pengfei Zhao. Tetraethylenepentamine Functionalized Phenolic Resin as Highly Active Acid-Base Bifunctional Catalyst for Knoevenagel Condensation Reaction[J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1179-1187.
Entry | Solvent | Catalyst loading/mol% | Dosage of methyl cyanoacetate/equiv. | Temp./℃ | Time/h | Yieldb/% |
---|---|---|---|---|---|---|
1 | H2O | — | 1.5 | 30 | 5 | N.R. |
2c | H2O | 0.1 g | 1.5 | 30 | 15 | 44 |
3d | H2O | 2.5 | 1.5 | 30 | 5 | 56 |
4 | Cyclohexane | 2.5 | 1.5 | 30 | 5 | 41 |
5 | CH3CN | 2.5 | 1.5 | 30 | 5 | 75 |
6 | EtOH | 2.5 | 1.5 | 30 | 5 | 80 |
7 | H2O | 2.5 | 1.5 | 30 | 5 | 97 |
8 | H2O | 2.5 | 1.2 | 30 | 5 | 92 |
9 | H2O | 2.5 | 1.5 | 30 | 1 | 80 |
10 | H2O | 2.5 | 1.5 | 30 | 3 | 87 |
11 | H2O | 2.5 | 1.5 | 30 | 4 | 96 |
12 | H2O | 2.5 | 1.5 | 25 | 7 | 97 |
13e | H2O | 2.5 | 1.5 | 30 | 5 | 96 |
14f | H2O | 2.5 | 1.5 | 30 | 5 | 84 |
15g | H2O | 2.5 | 1.5 | 30 | 1 | 97 |
16 | H2O | 1 | 1.5 | 30 | 5 | 44 |
17 | H2O | 5 | 1.5 | 30 | 5 | 96 |
18 | H2O | 10 | 1.5 | 30 | 5 | 95 |
Entry | Solvent | Catalyst loading/mol% | Dosage of methyl cyanoacetate/equiv. | Temp./℃ | Time/h | Yieldb/% |
---|---|---|---|---|---|---|
1 | H2O | — | 1.5 | 30 | 5 | N.R. |
2c | H2O | 0.1 g | 1.5 | 30 | 15 | 44 |
3d | H2O | 2.5 | 1.5 | 30 | 5 | 56 |
4 | Cyclohexane | 2.5 | 1.5 | 30 | 5 | 41 |
5 | CH3CN | 2.5 | 1.5 | 30 | 5 | 75 |
6 | EtOH | 2.5 | 1.5 | 30 | 5 | 80 |
7 | H2O | 2.5 | 1.5 | 30 | 5 | 97 |
8 | H2O | 2.5 | 1.2 | 30 | 5 | 92 |
9 | H2O | 2.5 | 1.5 | 30 | 1 | 80 |
10 | H2O | 2.5 | 1.5 | 30 | 3 | 87 |
11 | H2O | 2.5 | 1.5 | 30 | 4 | 96 |
12 | H2O | 2.5 | 1.5 | 25 | 7 | 97 |
13e | H2O | 2.5 | 1.5 | 30 | 5 | 96 |
14f | H2O | 2.5 | 1.5 | 30 | 5 | 84 |
15g | H2O | 2.5 | 1.5 | 30 | 1 | 97 |
16 | H2O | 1 | 1.5 | 30 | 5 | 44 |
17 | H2O | 5 | 1.5 | 30 | 5 | 96 |
18 | H2O | 10 | 1.5 | 30 | 5 | 95 |
Entry | Cat./cat. amount | Solvent | T/℃ | Time/min | Yield/% | Runb | Ref. |
---|---|---|---|---|---|---|---|
1 | Co(II)-organic frameworks/2 mol% | MeOH | 25~30 | 60 | 96 | — | [ |
2 | Sulfunic acid functionalized polymer (PHSA)/30 mg | H2O | r.t. | 180 | 100 | 5 | [ |
3 | V-Zn-MOF/2 mol% | None | 60 | 180 | 99 | 10 | [ |
4 | DABCO-based bis-dicationic ionic salt catalyst/30 mg | H2O | 85 | 8 | 95 | 3 | [ |
5 | Mg-Si-ZSM-12/100 mg | EtOH | 70 | 240 | 100 | 5 | [ |
6 | K7HNb6O19•13H2O/20 mg | EtOH | r.t. | 45 | 100 | 3 | [ |
7 | MOF-NH2/13 mol% | DMF | 80 | 240 | 97 | 5 | [ |
8 | Microporous organic polymer Fe-POP-1/ | V(H2O)∶V(EtOH)=1∶1 | r.t. | 300 | 96 | — | [ |
9 | Three pyrazole-3-carboxylic acid complexes/6 mol% | None | 50 | 300 | 93 | 3 | [ |
10 | TEPA-PR/2.5 mol% (25 mg) | H2O | 30 | 30 | 98 | 5 | This work |
Entry | Cat./cat. amount | Solvent | T/℃ | Time/min | Yield/% | Runb | Ref. |
---|---|---|---|---|---|---|---|
1 | Co(II)-organic frameworks/2 mol% | MeOH | 25~30 | 60 | 96 | — | [ |
2 | Sulfunic acid functionalized polymer (PHSA)/30 mg | H2O | r.t. | 180 | 100 | 5 | [ |
3 | V-Zn-MOF/2 mol% | None | 60 | 180 | 99 | 10 | [ |
4 | DABCO-based bis-dicationic ionic salt catalyst/30 mg | H2O | 85 | 8 | 95 | 3 | [ |
5 | Mg-Si-ZSM-12/100 mg | EtOH | 70 | 240 | 100 | 5 | [ |
6 | K7HNb6O19•13H2O/20 mg | EtOH | r.t. | 45 | 100 | 3 | [ |
7 | MOF-NH2/13 mol% | DMF | 80 | 240 | 97 | 5 | [ |
8 | Microporous organic polymer Fe-POP-1/ | V(H2O)∶V(EtOH)=1∶1 | r.t. | 300 | 96 | — | [ |
9 | Three pyrazole-3-carboxylic acid complexes/6 mol% | None | 50 | 300 | 93 | 3 | [ |
10 | TEPA-PR/2.5 mol% (25 mg) | H2O | 30 | 30 | 98 | 5 | This work |
[1] |
(a) Varga G.; Kukovecz Á.; Kónya Z.; Sipos P.; Pálinkó I. J. Catal. 2020, 381, 308.
pmid: 27196438 |
(b) Moteki T.; Koga Y.; Ogura M. J. Catal. 2019, 378, 131.
pmid: 27196438 |
|
(c) Zacuto M. J. J. Org. Chem. 2019, 84, 6465.
doi: 10.1021/acs.joc.9b00450 pmid: 27196438 |
|
(d) Li J. P. H.; Kennedy E. M.; Adesina A. A.; Stockenhuber M. J. Catal. 2019, 369, 157.
pmid: 27196438 |
|
(e) Jia Y.; Fang Y.; Zhang Y.; Miras H. N.; Song Y. Chem.-Eur. J. 2015, 21, 14862.
pmid: 27196438 |
|
(f) Garrabou X.; Wicky B. I. M.; Hilvert D. J. Am. Chem. Soc. 2016, 138, 6972.
doi: 10.1021/jacs.6b00816 pmid: 27196438 |
|
(g) Franconetti A.; Domínguez-Rodríguez P.; Lara-García D.; Prado-Gotor R.; Cabrera-Escribano F. Appl. Catal. A: Gen. 2016, 517, 176.
doi: 10.1016/j.apcata.2016.03.012 pmid: 27196438 |
|
(h) Ezugwu C. I.; Mousavi B.; Asraf M. A.; Luo Z.; Verpoort F. J. Catal. 2016, 344, 445.
pmid: 27196438 |
|
[2] |
(a) Kumar N. S.; Reddy M. S.; S. Kumar T. S.; Bheeram V. R.; Mukkamala S. B.; Rao L. C. ChemistrySelect 2019, 4, 1188.
doi: 10.1002/slct.201803302 |
(b) Gu X.; Tang Y.; Zhang X.; Luo Z.; Lu H. New J. Chem. 2016, 40, 6580.
doi: 10.1039/C6NJ00613B |
|
(c) Pandey R.; Singh D.; Thakur N.; Raj K. K. ACS Omega 2021, 6, 13240.
doi: 10.1021/acsomega.1c01155 |
|
(d) Grass J.; Klühspies K.; Reiprich B.; Schwieger W.; Inayat A. Catalysts 2021, 11, 474.
doi: 10.3390/catal11040474 |
|
(e) Das A.; Anbu N.; SK M. Dalton Trans. 2019, 4, 17371.
|
|
(f) Zhang X.; Zhang R.; Jin Y.; Li T. J. Solid State Chem. 2019, 278, 120927.
|
|
(g) Guo C. Y.; Zhang Y. H.; Zhang L.; Zhang Y.; Wang J. D. CrystEngComm 2018, 20, 5327.
doi: 10.1039/C8CE00954F |
|
[3] |
(a) Das A.; Anbu N.; Dhakshinamoorthy A.; Biswas S. Microporous Mesoporous Mater. 2019, 284, 459.
doi: 10.1016/j.micromeso.2019.04.057 |
(b) Gao M.; Qi M.; Liu L.; Han Z. Chem. Commun. 2019, 55, 6377.
doi: 10.1039/C9CC02174D |
|
[4] |
(a) Zhang X. Y.; He X. Y.; Zhao S. H. Green Chem Lett. Rev. 2021, 14, 85.
doi: 10.1080/17518253.2020.1862312 |
(b) Jiang Y.; Jiang F.; Liao X.; Lai S.; Wang S.; Xiong X.; Zheng J.; Liu Y. J. Porous Mater. 2020, 27, 779.
doi: 10.1007/s10934-020-00859-3 |
|
[5] |
(a) Appaturi J. N.; Pulingam T.; Rajabathar J. R.; Khoerunnisa F.; Ling T. C.; Tan S. H.; Ng E. Microporous Mesoporous Mater. 2021, 320, 111091.
doi: 10.1016/j.micromeso.2021.111091 |
(b) Li R. J.; Chen C.; Hu L. Y.; ChemistrySelect 2020, 5, 14578.
doi: 10.1002/slct.202004048 |
|
[6] |
(a) Jaenicke S.; Chuah G. K.; Lin X. H.; Hu X. C. Micro¬porous Mesoporous Mater. 2000, 35-36, 143.
|
[7] |
(a) Qian B.; Wang F.; Li D.; Li Y. Zhang B.; Zhu J. New J. Chem. 2020, 44, 5995.
doi: 10.1039/C9NJ06097A |
(b) Zhu J.; Wang F.; Li D.; Zhai J.; Liu P.; Zhang W.; Li Y.; Catal. Lett. 2020, 150, 1909.
doi: 10.1007/s10562-020-03103-4 |
|
(c) Xue B.; Liu X.; Liu N.; Li Y. Res. Chem. Intermed. 2018, 44, 1523.
doi: 10.1007/s11164-017-3182-2 |
|
[8] |
(a) Hajizadeh F.; Maleki B.; Zonoz F. M.; Amiri A. J. Iran. Chem. Soc. 2021, 18, 793.
doi: 10.1007/s13738-020-02071-1 |
(b) Hu Y.; Zhang J.; Wang Z.; Huo H.; Jiang Y.; Xu X.; Lin K. ACS Appl. Mater. Inter. 2020, 12, 36159.
doi: 10.1021/acsami.0c09544 |
|
[9] |
(a) Zhang X.; He X.; Zhao S. Green Chem. Lett. Rev. 2021, 14, 85.
doi: 10.1080/17518253.2020.1862312 |
(b) Gilanizadeh M.; Zeynizadeh B. Can. J. Chem. 2021, 99, 531.
doi: 10.1139/cjc-2020-0421 |
|
[10] |
(a) Yao C.; Zhou S.; Kang X.; Zhao Y.; Yan R.; Zhang Y.; Wen L. Inorg. Chem. 2018, 57, 11157.
doi: 10.1021/acs.inorgchem.8b01713 |
(b) Sarmah B.; Srivastava R. Mol. Catal. 2017, 427, 62.
|
|
(c) Zhang L.; Wang H.; Shen W.; Qin Z.; Wang J.; Fan W. J. Catal. 2016, 344, 293.
|
|
[11] |
Xiao J.; Wang L.; Ran J.; Zhao J.; Ma N.; Tao M.; Zhang W. J. Cleaner Prod. 2020, 274, 122473.
doi: 10.1016/j.jclepro.2020.122473 |
[12] |
Laha B.; Khullar S.; Gogia A.; Mandal S. K. Dalton Trans. 2020, 49, 12298.
doi: 10.1039/D0DT02153A |
[13] |
Sadjadi S.; Akbari M.; Kahangi F. G.; Heravi M. M. Polyhedron 2020, 179, 114375.
doi: 10.1016/j.poly.2020.114375 |
[14] |
Tian H.; Liu S.; Zhang Z.; Dang T.; Lu Y.; Liu S. ACS Sustainable Chem. Eng. 2021, 9, 4660.
doi: 10.1021/acssuschemeng.1c00389 |
[15] |
Zabihzadeh M.; Omidi A.; Shirini F.; Tajik H.; Langarudi M. S. N. J. Mol. Struct. 2020, 1206, 127730.
doi: 10.1016/j.molstruc.2020.127730 |
[16] |
Wen H.; Xie J.; Zhou Y.; Zhou Y.; Wang J. Catal. Sci. Technol. 2019, 9, 5725.
doi: 10.1039/C9CY01329F |
[17] |
Xu Q.; Niu Y.; Wang G.; Li Y.; Zhao Y.; Singh V.; Niu J.; Wang J. Mol. Catal. 2018, 453, 93.
|
[18] |
Taher A.; Lee D.; Lee B.; Lee I. Synlett. 2016, 27, 1433.
doi: 10.1055/s-0035-1561356 |
[19] |
Modak A.; Mondal J.; Bhaumik A. Appl. Catal. A: Gen. 2013, 459, 41.
doi: 10.1016/j.apcata.2013.03.036 |
[20] |
Rong N.; Qiu T.; Qian R.; Lu L.; Huang X.; Ma Z.; Cui C. Inorg. Chem. Commun. 2017, 86, 98.
doi: 10.1016/j.inoche.2017.09.017 |
[21] |
Blanco-Ania D.; Valderas-Cortina C.; Hermkens P. H. H.; Sliedregt L. A. J. M.; Scheeren H. W.; Rutjes F. P. J. T. Molecules 2010, 15, 2269.
doi: 10.3390/molecules15042269 pmid: 20428042 |
[22] |
Balalaie S.; Bararjanian M.; Hekmat S.; Salehi P. Synth. Commun. 2006, 36, 3703.
doi: 10.1080/10916460600946113 |
[23] |
Xu H.; Pan L.; Fang X.; Liu B.; Zhang W.; Lu M.; Chang H. Tetrahedron Lett. 2017, 58, 2360.
doi: 10.1016/j.tetlet.2017.05.006 |
[24] |
Li J.; Lear M. J.; Hayashi Y. Chem.-Eur. J. 2021, 27, 5901.
|
[25] |
Shi D. Q.; Chen J.; Zhuang Q. Y.; Wang X. S.; Hu H. W. Chin. Chem. Lett. 2003, 14, 1242.
|
[26] |
Tukhtaev H. B.; Ivanov K. L.; Bezzubov S. I.; Cheshkov D. A.; Melnikov M. Y.; Budynina E. M. Org. Lett. 2019, 21, 1087.
doi: 10.1021/acs.orglett.8b04135 |
[27] |
Ren Y. M.; Cai C. Catal. Lett. 2007, 118, 134.
doi: 10.1007/s10562-007-9169-7 |
[28] |
Wiles C.; Watts P. Haswell S. J. Lab Chip 2007, 7, 322.
doi: 10.1039/B615069A |
[29] |
Yadav J. S.; Reddy B. V. S.; Basak A. K.; Visali B.; Narsaiah A. V.; Nagaiah K. Eur. J. Org. Chem. 2004, 2004, 546.
doi: 10.1002/ejoc.200300513 |
[1] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[2] | Xu Liao, Zeyu Wang, Wufei Tang, Jinqing Lin. Progress in Porous Organic Polymer for Chemical Fixation of Carnbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2699-2710. |
[3] | Lu Liu, Shuguang Zhang, Renwei Hu, Xiaoxiao Zhao, Jingnan Cui, Weitao Gong. Synthesis and Properties of Phenolic Resin Polymers Based on Pillar[5]arene [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2808-2814. |
[4] | Shiguo Ou, Ruirui Chai, Jiahao Li, Dawei Wang, Xinxin Sang. Metal-Organic Framework Derived Phytate-Iron for Efficient Synthesis of 2-Arylbenzoxazole via Hydrogen Transfer Strategy [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2934-2945. |
[5] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
[6] | Rui Bai, Xujuan Liu, Wenyu Luo, Shanshan Liu, Linyu Jiao. Research Progress of Chan-Lam Coupling Reaction in Heterogeneous Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2342-2354. |
[7] | Qiang Huang, Tingting Deng, Jiayun Zhu, Jun Li, Feifei Li. Study on the Green Synthesis of β-Hydroxy-1,2,3-triazoles Catalyzed by An Amino-Functionalized Graphene-Supported Ag-Cu Composites [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 534-542. |
[8] | Yaoyao Zhang, Lijie Zhou, Biao Han, Weishuang Li, Bojie Li, Lei Zhu. Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 33-53. |
[9] | Xin Chen, Chunxia Chen, Jinsong Peng. Research Progress of Cellulose and Its Derivatives Supported Copper Catalyst Catalyzed Organic Reactions [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1319-1336. |
[10] | Yuxuan Chen, Qi Chen, Zhanhui Zhang. Application of Covalent Organic Framework Materials as Heterogeneous Ligands in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3826-3843. |
[11] | Feiyu Wang, Zhipeng Zhang, Fei Huang. Research Progress of O—H Insertion Reaction Based on Diazo Ester [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 144-157. |
[12] | Wang Lingfeng, Qian Ying. Near-Infrared Quinoline-Fluoroborodipyrrole Dye: Synthesis and Lysosomal Fluorescence Imaging [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1246-1250. |
[13] | Xu Zi-Yue, Luo Yi, Wang Hui, Zhang Dan-Wei, Li Zhan-Ting. Porous Organic Polymers as Heterogeneous Catalysts for Visible Light-Induced Organic Transformations [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3777-3793. |
[14] | Chen Xiaoling, Chen Jingwen, Bao Zongbi, Yang Qiwei, Yang Yiwen, Ren Qilong, Zhang Zhiguo. MIL-101(Cr)-SO3H Catalyzed Transfer Hydrogenation of 2-Substituted Quinoline Derivatives [J]. Chin. J. Org. Chem., 2019, 39(6): 1681-1687. |
[15] | Xu Peng, Duan Xinhong. Recent Progress in the Suzuki-Miyaura Cross-Coupling Reactions in Water [J]. Chinese Journal of Organic Chemistry, 2019, 39(12): 3315-3327. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||