Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (2): 534-542.DOI: 10.6023/cjoc202107024 Previous Articles Next Articles
ARTICLES
黄强a,b,*(), 邓婷婷a, 朱佳运a, 李军a, 黎飞飞a
收稿日期:
2021-07-10
修回日期:
2021-09-27
发布日期:
2022-02-24
通讯作者:
黄强
基金资助:
Qiang Huanga,b(), Tingting Denga, Jiayun Zhua, Jun Lia, Feifei Lia
Received:
2021-07-10
Revised:
2021-09-27
Published:
2022-02-24
Contact:
Qiang Huang
Supported by:
Share
Qiang Huang, Tingting Deng, Jiayun Zhu, Jun Li, Feifei Li. Study on the Green Synthesis of β-Hydroxy-1,2,3-triazoles Catalyzed by An Amino-Functionalized Graphene-Supported Ag-Cu Composites[J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 534-542.
Entry | Catalyst (loading/mg) | T/℃ | Solvent | Yieldb/% |
---|---|---|---|---|
1 | Ag-Cu/GO-NH2 (5) | 80 | EtOH | 16 |
2 | Ag-Cu/GO-NH2 (5) | 80 | MeOH | 12 |
3 | Ag-Cu/GO-NH2 (5) | 80 | H2O | 73 |
4 | Ag-Cu/GO-NH2 (5) | 80 | CH3CN | ND |
5 | Ag-Cu/GO-NH2 (5) | 80 | DMF | ND |
6 | Ag-Cu/GO-NH2 (5) | 70 | H2O | 81 |
7 | Ag-Cu/GO-NH2 (5) | 60 | H2O | 85 |
8 | Ag-Cu/GO-NH2 (5) | 50 | H2O | 87 |
9 | Ag-Cu/GO-NH2 (5) | 40 | H2O | 68 |
10 | Ag-Cu/GO-NH2 (5) | 25 | H2O | 26 |
11 | Ag-Cu/GO-NH2 (6) | 50 | H2O | 88 |
12 | Ag-Cu/GO-NH2 (4) | 50 | H2O | 87 |
13 | Ag-Cu/GO-NH2 (3) | 50 | H2O | 89 |
14 | Ag-Cu/GO-NH2 (2) | 50 | H2O | 91 |
15 | Ag-Cu/GO-NH2 (1) | 50 | H2O | 72 |
16 | — | 50 | H2O | ND |
Entry | Catalyst (loading/mg) | T/℃ | Solvent | Yieldb/% |
---|---|---|---|---|
1 | Ag-Cu/GO-NH2 (5) | 80 | EtOH | 16 |
2 | Ag-Cu/GO-NH2 (5) | 80 | MeOH | 12 |
3 | Ag-Cu/GO-NH2 (5) | 80 | H2O | 73 |
4 | Ag-Cu/GO-NH2 (5) | 80 | CH3CN | ND |
5 | Ag-Cu/GO-NH2 (5) | 80 | DMF | ND |
6 | Ag-Cu/GO-NH2 (5) | 70 | H2O | 81 |
7 | Ag-Cu/GO-NH2 (5) | 60 | H2O | 85 |
8 | Ag-Cu/GO-NH2 (5) | 50 | H2O | 87 |
9 | Ag-Cu/GO-NH2 (5) | 40 | H2O | 68 |
10 | Ag-Cu/GO-NH2 (5) | 25 | H2O | 26 |
11 | Ag-Cu/GO-NH2 (6) | 50 | H2O | 88 |
12 | Ag-Cu/GO-NH2 (4) | 50 | H2O | 87 |
13 | Ag-Cu/GO-NH2 (3) | 50 | H2O | 89 |
14 | Ag-Cu/GO-NH2 (2) | 50 | H2O | 91 |
15 | Ag-Cu/GO-NH2 (1) | 50 | H2O | 72 |
16 | — | 50 | H2O | ND |
Entry | Catalyst | Conditions | Yielda/% |
---|---|---|---|
1 | Ag-Cu/GO-NH2 | 2 mg, 50 ℃, H2O, 3 h | 91 |
2 | Ag2CO3 | 5 mg, 50 ℃, H2O, 3 h | 18 |
3 | Cu(CH3COO)2•H2O | 5 mg, 50 ℃, H2O, 3 h | 15 |
4 | AgNO3 | 5 mg, 50 ℃, H2O, 3 h | 17 |
5 | Ag/GO-NH2 | 2 mg, 50 ℃, H2O, 3 h | 21 |
6 | Cu/GO-NH2 | 2 mg, 50 ℃, H2O, 3 h | 78 |
Entry | Catalyst | Conditions | Yielda/% |
---|---|---|---|
1 | Ag-Cu/GO-NH2 | 2 mg, 50 ℃, H2O, 3 h | 91 |
2 | Ag2CO3 | 5 mg, 50 ℃, H2O, 3 h | 18 |
3 | Cu(CH3COO)2•H2O | 5 mg, 50 ℃, H2O, 3 h | 15 |
4 | AgNO3 | 5 mg, 50 ℃, H2O, 3 h | 17 |
5 | Ag/GO-NH2 | 2 mg, 50 ℃, H2O, 3 h | 21 |
6 | Cu/GO-NH2 | 2 mg, 50 ℃, H2O, 3 h | 78 |
[1] |
(a) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian. J. 2011, 6, 2696.
doi: 10.1002/asia.v6.10 |
(b) Bozorov, K.; Zhao, J.; Aisa, H. A. Bioorg. Med. Chem. 2019, 27, 3511.
|
|
(c) Buabeng, E. R.; Henary, M. Bioorg. Med. Chem. 2021, 39, 116140.
doi: 10.1016/j.bmc.2021.116140 |
|
[2] |
(a) Saehlim, N.; Kasemsuk, T.; Sirion, U.; Saeeng, R. J. Org. Chem. 2018, 83, 13233.
doi: 10.1021/acs.joc.8b02056 |
(b) Zhang, W.; Xu, W.; Zhang, F.; Ma, C.; Ma, K.; Li, Y. Chin. J. Org. Chem. 2020, 40, 2338. (in Chinese)
doi: 10.6023/cjoc202002010 |
|
( 张文生, 许文静, 张斐, 马春玉, 马科友, 李焱, 有机化学, 2020, 40, 2338.)
doi: 10.6023/cjoc202002010 |
|
(c) Liu, Q.; Lu, Y.; Bao, P.; Yue, H.; Wei, W. Chin. J. Org. Chem. 2020, 40, 4015. (in Chinese)
doi: 10.6023/cjoc202008042 |
|
( 刘启顺, 吕玉芬, 鲍鹏丽, 岳会兰, 魏伟, 有机化学, 2020, 40, 4015.)
doi: 10.6023/cjoc202008042 |
|
[3] |
(a) Schock, M.; Braese, S. Molecules 2020, 25, 1009.
doi: 10.3390/molecules25041009 |
(b) Rodrigues, L. D.; Sunil, D.; Chaithra, D.; Bhagavath, P. J. Mol. Liq. 2020, 297, 111909.
doi: 10.1016/j.molliq.2019.111909 |
|
[4] |
(a) Ra, A.; Fbz, B.; Mk, A.; Eb, C.; Ft, A. J. Mol. Struct. 2021, 1232, 130042.
doi: 10.1016/j.molstruc.2021.130042 |
(b) Yamada, M.; Takahashi, T.; Hasegawa, M.; Matsumura, M.; Ono, K.; Fujimoto, R.; Kitamura, Y.; Murata, Y.; Kakusawa, N.; Tanaka, M.; Obata, T.; Fujiwara, Y.; Yasuike, S. Bioorg. Med. Chem. Lett. 2018, 28, 152.
doi: 10.1016/j.bmcl.2017.11.038 |
|
[5] |
Nejadshafiee, V.; Naeimi, H.; Zahraei, Z. Chem. Data Collect. 2020, 28, 100443.
doi: 10.1016/j.cdc.2020.100443 |
[6] |
(a) Ge, C.; Sang, X.; Yao, W.; Zhang, L.; Wang, D. Green Chem. 2018, 20, 1805.
doi: 10.1039/C7GC02892J |
(b) Zhu, G.; Duan, Z.; Zhu, H.; Qi, M.; Wang, D. Mol. Catal. 2021, 505, 111516.
|
|
(c) Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21, 5345.
doi: 10.1039/C9GC02086A |
|
(d) Yao, W.; Zhang, Y.; Zhu, H.; Ge, C.; Wang, D. Chin. Chem. Lett. 2020, 31, 701.
doi: 10.1016/j.cclet.2019.08.049 |
|
(e) Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296. (in Chinese)
doi: 10.6023/cjoc201805019 |
|
( 胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.)
doi: 10.6023/cjoc201805019 |
|
[7] |
(a) Camberlein, V.; Kraupner, N.; Bou Karroum, N.; Lipka, E.; Deprez-Poulain, R.; Deprez, B.; Bosc, D. Tetrahedron Lett. 2021, 73, 153131.
doi: 10.1016/j.tetlet.2021.153131 |
(b) Singh, M. S.; Chowdhury, S.; Koley, S. Tetrahedron 2016, 72, 5257.
doi: 10.1016/j.tet.2016.07.044 |
|
(c) Guo, Y.; Liu, Y.; Wan, J. Chin. Chem. Lett. 2021, Doi: 10.1016/j.cclet.2021.08.003.
doi: 10.1016/j.cclet.2021.08.003 |
|
(d) Ahmed, M.; Razaq, H.; Faisal, M.; Siyal, A.N.; Haider, A. Synth. Commun. 2017, 47, 1193.
doi: 10.1080/00397911.2017.1303511 |
|
[8] |
Totobenazara, J.; Burke, A. J. Tetrahedron Lett. 2015, 56, 2853.
doi: 10.1016/j.tetlet.2015.03.136 |
[9] |
(a) Kalra, P.; Kaur, R.; Singh, G.; Singh, H.; Singh, G.; Pawan; Kaur, G.; Singh, J. J. Organomet. Chem. 2021, 944, 121846.
doi: 10.1016/j.jorganchem.2021.121846 |
(b) Anbarasan, P.; Yadagiri, D.; Rajasekar, S. Synthesis 2014, 46, 3004.
doi: 10.1055/s-00000084 |
|
[10] |
(a) Noshiranzadeh, N.; Emami, M.; Bikas, R.; Kozakiewicz, A. New J. Chem. 2017, 41, 2658.
doi: 10.1039/C6NJ03865D |
(b) Kim, W.; Kang, M.; Lee, J.; Jeon, M.; Lee, S.; Lee, J.; Choi, B.; Cal, P. M. S. D.; Kang, S.; Kee, J.; Bernardes, G. J. L.; Rohde, J.; Choe, W.; Hong, S. J. Am. Chem. Soc. 2017, 139, 12121.
doi: 10.1021/jacs.7b06338 |
|
(c) Liu, Z.; Hao, W.; Gao, W.; Zhu, G.; Li, X.; Tong, L.; Tang, B. Sci. China Chem. 2019, 62, 1001.
doi: 10.1007/s11426-019-9455-0 |
|
[11] |
(a) Khalili, D.; Kavoosi, L.; Khalafi-Nezhad, A. Synlett 2019, 30, 2136.
doi: 10.1055/s-0039-1690719 |
(b) Talha, A.; Mourhly, A.; Tachallait, H.; Driowya, M.; El Hamidi, A.; Arshad, S.; Karrouchi, K.; Arsalane, S.; Bougrin, K. Tetrahedron 2021, 90, 132215.
doi: 10.1016/j.tet.2021.132215 |
|
(c) Alonso, F.; Moglie, Y.; Radivoy, G. Acc. Chem. Res. 2015, 48, 2516.
doi: 10.1021/acs.accounts.5b00293 |
|
(d) Rani, G. S.; Vijay, M.; Prabhavathi Devi, B. L. A. ChemistrySelect 2019, 4, 10133.
doi: 10.1002/slct.v4.34 |
|
(e) Bhaskaruni, S. V. H. S.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. Arabian J. Chem. 2020, 13, 1142.
doi: 10.1016/j.arabjc.2017.09.016 |
|
(f) Rakhshanipour, M.; Eshghi, H.; Bakavoli, M. Appl. Organomet. Chem. 2020, 34, e5426.
|
|
(g) Tian, A; Luo, X.; Ren, Z.; Zhao, J.; Wang, L. New J. Chem. 2021, 45, 9614.
doi: 10.1039/D1NJ00861G |
|
[12] |
Nasrollahzadeh, M.; Issaabadi, Z.; Tohidi, M. M.; Mohammad Sajadi, S. Chem. Rec. 2018, 18, 165.
doi: 10.1002/tcr.v18.2 |
[13] |
(a) Naeimi, H.; Shaabani, R. Ultrason. Sonochem. 2017, 34, 246.
doi: 10.1016/j.ultsonch.2016.05.043 pmid: 31458889 |
(b) Gupta, A.; Jamatia, R.; Patil, R. A.; Ma, Y.-R.; Pal, A. K. ACS Omega 2018, 3, 7288.
doi: 10.1021/acsomega.8b00334 pmid: 31458889 |
|
(c) Mirza-Aghayan, M.; Saeedi, M.; Boukherroub, R. Appl. Organomet. Chem. 2020, 34, 5928.
pmid: 31458889 |
|
[14] |
(a) Salam, N.; Sinha, A.; Roy, A. S.; Mondal, P.; Jana, N. R.; Islam, S. M. RSC Adv. 2014, 4, 10001.
doi: 10.1039/c3ra47466f |
(b) Xiong, X.; Chen, H.; Tang, Z.; Jiang, Y. RSC Adv. 2014, 4, 9830.
doi: 10.1039/c3ra45994b |
|
(c) Ghadamyari, Z.; Khojastehnezhad, A.; Seyedi, S. M.; Taghavi, F.; Shiri, A. ChemistrySelect 2020, 5, 10233.
doi: 10.1002/slct.v5.33 |
|
(d) Deilam, R.; Moeinpour, F.; Mohseni-Shahri, F. S. Monatsh. Chem. 2020, 151, 1153.
doi: 10.1007/s00706-020-02652-z |
|
(e) Kumar, A.; Verma, S.; Pathak, D. D. J. Environ. Chem. Eng. 2021, 9, 105791.
doi: 10.1016/j.jece.2021.105791 |
|
[15] |
(a) Huang, Q.; Zhou, L.; Jiang, X.; Zhou, Y.; Fan, H.; Lang, W. ACS Appl. Mater. Interfaces 2014, 6, 13502.
doi: 10.1021/am502586c |
(b) Zhou, L.; Lang, W.; Jiang, X.; Huang, Q.; Yin, M. Chin. J. Org. Chem. 2015, 35, 2340. (in Chinese)
doi: 10.6023/cjoc201504028 |
|
( 周丽梅, 郎文成, 蒋晓慧, 黄强, 尹梦云, 有机化学, 2015, 35, 2340.)
doi: 10.6023/cjoc201504028 |
|
[16] |
Saúl, N.; Elisa, L.; Edgar, M.; Luisa, F.; Loredo-Carrillo, Silvia, L. C. Curr. Org. Chem. 2020, 24, 536.
doi: 10.2174/1385272824666200226120135 |
[17] |
(a) Sharma, N.; Choudhary, A.; Kaur, M.; Sharma, C.; Paul, S.; Gupta, M. RSC Adv. 2020, 10, 30048.
doi: 10.1039/D0RA01540G |
(b) Sultana, S.; Mech, S. D.; Hussain, F. L.; Pahari, P.; Borah, G.; Gogoi, P. K. RSC Adv. 2020, 10, 23108.
doi: 10.1039/D0RA01189D |
|
(c) Rout, L.; Kumar, A.; Dhaka, R. S.; Reddy, G. N.; Giri, S.; Dash, P. Appl. Catal., A 2017, 538, 107.
|
|
[18] |
(a) Wang, Y.; Liu, J.; Xia, C. Adv. Synth. Catal., 2011, 353, 1534.
doi: 10.1002/adsc.201000868 |
(b) Sharghi, H.; Beyzavi, M. H.; Safavi, A.; Doroodmand, M. M.; Khalifeh, R. Adv. Synth. Catal. 2009, 351, 2391.
doi: 10.1002/adsc.v351:14/15 |
|
(c) Spiteri, C.; Moses, J. E. Angew. Chem., Int. Ed. 2010, 49, 31.
doi: 10.1002/anie.200905322 |
[1] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[2] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
[3] | Jianghu Dong, Liangming Xuan, Chi Wang, Chenxi Zhao, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fen'er Chen. Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 111-136. |
[4] | Xu Liao, Zeyu Wang, Wufei Tang, Jinqing Lin. Progress in Porous Organic Polymer for Chemical Fixation of Carnbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2699-2710. |
[5] | Shiguo Ou, Ruirui Chai, Jiahao Li, Dawei Wang, Xinxin Sang. Metal-Organic Framework Derived Phytate-Iron for Efficient Synthesis of 2-Arylbenzoxazole via Hydrogen Transfer Strategy [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2934-2945. |
[6] | Kai Lu, Haoqi Qu, Xi Chen, Hui Qiu, Jing Zheng, Mengtao Ma. Catalyst-Free and Solvent-Free Hydroboration of Alkynes and Alkenes with Catecholborane [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2197-2205. |
[7] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
[8] | Tiantian Liu, Xinhong Duan. Recent Progress in the Construction of Chiral 3-Substituted Indoles by Asymmetric Friedel-Crafts Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3695-3712. |
[9] | Sining Qin. Research Progress in C—S Coupling Reactions of Aryl Halides [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3761-3783. |
[10] | Hao Zhang, Qingbin Zhao, Zhongrui Ruan, Zhenxing Liu. Recent Development of SuFEx Reaction between Silyl Ethers and Sulfur(VI) Fluoride Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3569-3579. |
[11] | Zhiyuan Chen, Mengwei Yang, Jianlin Xu, Yunhe Xu. Regioselective Synthesis of β-Silyl-Substituted Vinylphosphine Oxides via Copper-Catalyzed Protosilylation of Dialkynylphosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3598-3607. |
[12] | Xiangkun Meng, Zhengyuan Qi, Lei Yu, Yiyang Zhang. Catalytic System for Poly(lactic acid) Synthesis: Opportunities and Challenges [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 112-119. |
[13] | Xudong Cui, Xiangkun Meng, Ying Chen, Yonghong Liu, Lei Yu. Preparation of L-Lactide with High Optical Purity via the Zinc-Doped Polypyrrole-Catalyzed Lactic Acid Condensation [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2954-2960. |
[14] | Shouyi Cen, Zhipeng Zhang. Synthesis of Biphenanthrol-Based Confined Chiral Phosphoric Acid [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2574-2581. |
[15] | Rui Bai, Xujuan Liu, Wenyu Luo, Shanshan Liu, Linyu Jiao. Research Progress of Chan-Lam Coupling Reaction in Heterogeneous Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2342-2354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||