Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (4): 1215-1240.DOI: 10.6023/cjoc202207013 Previous Articles Next Articles
REVIEWS
收稿日期:
2022-08-19
修回日期:
2022-09-21
发布日期:
2022-11-15
通讯作者:
陈春霞, 彭进松
基金资助:
Baichuan Moa,b, Chunxia Chena,b(), Jinsong Penga()
Received:
2022-08-19
Revised:
2022-09-21
Published:
2022-11-15
Contact:
Chunxia Chen, Jinsong Peng
Supported by:
Share
Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240.
名称 | 提取流程 | 特征 |
---|---|---|
硫酸盐木质素 | Na2S/NaOH | 高度修饰, 部分碎片化 |
木质素磺酸盐 | 从软木材硫酸盐制浆工艺的废液中提取木质素 | 高度修饰, 高平均分子量, 醚键断裂, 甲氧基裂解且 会形成新的碳-碳键 |
磨木质素(MWL) | 球磨后用二氧六环和水混合溶剂提取 | 最接近天然结构, 多次球磨可能导致部分解聚 |
有机溶剂木质素 | 直接用有机溶剂提取木质素 | 条件温和, 木质素收率高, 可以回收有机溶剂 |
离子液体木质素 | 逐步沉淀或选择性提取 | 与硫酸盐木质素比结构改变更小, 分子量分布更均匀 |
蒸汽爆破木质素 | 对纤维进行高温蒸汽爆破 | 不需要或需要很少的化学试剂, 能耗低, 处理时间短, 只改变某些特定的官能团 |
碱性木质素 | 在碱性条件下处理木质素 | 通过β-O-4断裂进行部分降解 |
名称 | 提取流程 | 特征 |
---|---|---|
硫酸盐木质素 | Na2S/NaOH | 高度修饰, 部分碎片化 |
木质素磺酸盐 | 从软木材硫酸盐制浆工艺的废液中提取木质素 | 高度修饰, 高平均分子量, 醚键断裂, 甲氧基裂解且 会形成新的碳-碳键 |
磨木质素(MWL) | 球磨后用二氧六环和水混合溶剂提取 | 最接近天然结构, 多次球磨可能导致部分解聚 |
有机溶剂木质素 | 直接用有机溶剂提取木质素 | 条件温和, 木质素收率高, 可以回收有机溶剂 |
离子液体木质素 | 逐步沉淀或选择性提取 | 与硫酸盐木质素比结构改变更小, 分子量分布更均匀 |
蒸汽爆破木质素 | 对纤维进行高温蒸汽爆破 | 不需要或需要很少的化学试剂, 能耗低, 处理时间短, 只改变某些特定的官能团 |
碱性木质素 | 在碱性条件下处理木质素 | 通过β-O-4断裂进行部分降解 |
电极 | 电解液 | 法拉第效率/% |
---|---|---|
铜-木质素-泡沫镍 | 0.1 mol/L Na2SO4 | 23.20 |
铜-泡沫镍 | 0.1 mol/L Na2SO4 | 16.50 |
铜/N-参杂石墨烯 | 0.1 mol/L KHCO3 | 63 |
铜网 | 0.5 mol/L KHCO3 | 13 |
3D CuO | 0.1 mol/L KHCO3 | 13 |
Cu/TiO2 | 0.2 mol/L KI | 27.40 |
石墨烯/Cu2O | 0.5 mol/L NaHCO3 | 9.93 |
Cu4Zn | 0.1 mol/L KHCO3 | 29.10 |
电极 | 电解液 | 法拉第效率/% |
---|---|---|
铜-木质素-泡沫镍 | 0.1 mol/L Na2SO4 | 23.20 |
铜-泡沫镍 | 0.1 mol/L Na2SO4 | 16.50 |
铜/N-参杂石墨烯 | 0.1 mol/L KHCO3 | 63 |
铜网 | 0.5 mol/L KHCO3 | 13 |
3D CuO | 0.1 mol/L KHCO3 | 13 |
Cu/TiO2 | 0.2 mol/L KI | 27.40 |
石墨烯/Cu2O | 0.5 mol/L NaHCO3 | 9.93 |
Cu4Zn | 0.1 mol/L KHCO3 | 29.10 |
[1] |
Schulze, F. Chem. Zentralbl. 1857, 21, 321.
|
[2] |
Adler, E. Wood Sci. Technol. 1977, 11, 169.
doi: 10.1007/BF00365615 |
[3] |
Pan, X. J.; Kadla, J. F.; Ehara, K.; Gilkes, N.; Saddler, J. N. J. Agric. Food Chem. 2006, 54, 5806.
doi: 10.1021/jf0605392 |
[4] |
Liew, R. K.; Nam, W. L.; Chong, M. Y.; Phang, X. Y.; Su, M. H.; Yek, P. N. Y.; Ma, N. L.; Cheng, C. K.; Chong, C. T.; Lam, S. S. Process Saf. Environ. Prot. 2018, 115, 57.
doi: 10.1016/j.psep.2017.10.005 |
[5] |
Anderson, E. M.; Katahira, R.; Reed, M.; Resch, M. G.; Karp, E. M.; Beckham, G. T. ACS Sustainable Chem. Eng. 2016, 4, 6940.
doi: 10.1021/acssuschemeng.6b01858 |
[6] |
Gioia, C.; Re, L. G.; Lawoko, M.; Berglund, L. J. Am. Chem. Soc. 2018, 140, 4054.
doi: 10.1021/jacs.7b13620 |
[7] |
Pu, Y. Q.; Cao, S. L.; Ragauskas, A. J. Energy Environ. Sci. 2011, 4, 3154.
doi: 10.1039/c1ee01201k |
[8] |
Freudenberg, K. Nature 1959, 183, 1152.
doi: 10.1038/1831152a0 |
[9] |
Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev. 2010, 110, 3552.
doi: 10.1021/cr900354u pmid: 20218547 |
[10] |
Wang, Y. P.; Dai, L. L.; Fan, L. L.; Shan, S. Q.; Liu, Y. H.; Roger, R. J. Anal. Appl. Pyrolysis 2016, 119, 104.
doi: 10.1016/j.jaap.2016.03.011 |
[11] |
Wang, C.; Kelley, S. S.; Venditti, R. A. ChemSusChem 2016, 9, 770.
doi: 10.1002/cssc.201501531 |
[12] |
Ralph, J.; Lundquist, K.; Brunow, G.; Lu, F. C.; Kim, H.; Schatz1, P. F.; Marita, J. M.; Hatfield, R. D.; Ralph, S. A.; Christensen, J. H.; Boerjan,, W. Phytochem. Rev. 2004, 3, 29.
doi: 10.1023/B:PHYT.0000047809.65444.a4 |
[13] |
Boeriu, C. G.; Bravo, D.; Gosselink, R. J. A.; Dam, J. E. G. V. Ind. Crops Prod. 2004, 20, 205.
doi: 10.1016/j.indcrop.2004.04.022 |
[14] |
Chakar, F. S.; Ragauskas, A. J. Ind. Crops Prod. 2004, 20. 131.
|
[15] |
Wikberg, H.; Ohra-aho, T.; Pileidis, F.; Titirici, M. M. ACS Sustainable Chem. Eng. 2015, 3, 2737.
doi: 10.1021/acssuschemeng.5b00925 |
[16] |
Río, J. C. D.; Rencoret, J.; Marques, G.; Gutiérrez, A.; Ibarra, D.; Santos, J. I.; Jiménez-Barbero, J.; Zhang, L. M.; Martínez, Á. T. J. Agric. Food Chem. 2008, 56, 9525.
doi: 10.1021/jf800806h |
[17] |
Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev. 2010, 110, 3552.
doi: 10.1021/cr900354u pmid: 20218547 |
[18] |
Vanholme, R.; Morreel, K.; Ralph, J.; Boerjan, W. Curr. Opin. Plant Biol. 2008, 11, 278.
doi: 10.1016/j.pbi.2008.03.005 pmid: 18434238 |
[19] |
Nada, A. A. M. A.; El-sakhawy, M.; Kamel, S. Int. J. Polym. Mater. Polym. Biomater. 2000, 46, 121.
doi: 10.1080/00914030008054846 |
[20] |
Boerjan, W.; Ralph, J.; Baucher, M. Annu. Rev. Plant Biol. 2003, 54, 519.
pmid: 14503002 |
[21] |
Hatakeyama, H.; Hatakeyama, T. Adv. Polym. Sci. 2010, 232, 1.
|
[22] |
Li, C. Z.; Zhao, X. C.; Wang, A. Q.; Huber, G. W.; Zhang, T. Chem. Rev. 2015, 115, 11559.
doi: 10.1021/acs.chemrev.5b00155 |
[23] |
Kai, D.; Tan, M. J.; Chee, P. L.; Chua, Y. K.; Yap, Y. L.; Loh X. J. ; Green Chem. 2016, 18, 1175.
doi: 10.1039/C5GC02616D |
[24] |
Saito, T.; Brown, R. H.; Hunt, M. A.; Pickel, D. L.; Pickel, J. M.; Messman, J. M.; Baker, F. S.; Keller, M.; Naskar, A. K. Green Chem. 2012, 14, 3295.
doi: 10.1039/c2gc35933b |
[25] |
Culebras, M.; Geaney, H.; Beaucamp, A.; Upadhyaya, P.; Dalton E. Ryan, K. M.; Collins, M. N. ChemSusChem 2019, 12, 4516.
doi: 10.1002/cssc.201901562 pmid: 31390144 |
[26] |
Sun, S. H.; Bai, R. X.; Gu, Y. L. Chem.-Eur. J. 2014, 20, 549.
doi: 10.1002/chem.v20.2 |
[27] |
Lai, B. B.; Bai, R. X.; Gu, Y. L. ACS Sustainable Chem. Eng. 2018, 6, 17076.
doi: 10.1021/acssuschemeng.8b04451 |
[28] |
Zhou, Z. D.; Peng, X. W.; Zhong, L. X.; Li, X. H.; Sun, R. C. Polymers 2018, 10, 724.
doi: 10.3390/polym10070724 |
[29] |
Wang, Y. L.; Ren, K.; Sun, J.; Li, W.; Zhao, S. L.; Chen, Z. H.; Guan, J. G. Compos. Sci. Technol. 2017, 140, 89.
doi: 10.1016/j.compscitech.2016.12.030 |
[30] |
Lu, C.; Qi, L.; Yang, J.; Wang, X.; Zhang, D.; Xie, J.; Ma, J. Adv. Mater. 2005, 17, 2562.
doi: 10.1002/(ISSN)1521-4095 |
[31] |
Lai, B. B.; Ye, M.; Liu, P.; Li, M. H.; Bai, R. X.; Gu, Y. L. Beilstein J. Org. Chem. 2020, 16, 2888.
doi: 10.3762/bjoc.16.238 |
[32] |
Akhtar, K.; Ali, F.; Sohni, S.; Kamal, T.; Asiri, A. M.; Bakhsh, E. M.; Khan, S. B. Environ. Sci. Pollut. Res. 2020, 27, 823.
doi: 10.1007/s11356-019-06908-y |
[33] |
Ahmadpoor, F.; Nasrollahzadeh, M.; Mohammad, M. Sep. Purif. Technol. 2021, 272, 118864.
doi: 10.1016/j.seppur.2021.118864 |
[34] |
Huang, Y. J.; Kang, Y.; El-kott, A.; Ahmed, A. E.; Khames, A.; Zein, M. A. Arabian J. Chem. 2021, 14, 103299.
doi: 10.1016/j.arabjc.2021.103299 |
[35] |
Nasrollahzadeh, M.; Soleimani, F.; Nezafat, Z.; Orooji, Y.; Ah-madpoor, F. Biomass Conv. Bioref. 2021, 12, 1.
|
[36] |
Nasrollahzadeh, M.; Bidgoli, N. S. S.; Karimkhani, M. M. Biomass Convers. Biorefin. 2021, https://doi.org/10.1007/s13399-021-01841-y.
|
[37] |
Chanda, D.; Tufa, R. A.; Aili, D.; Basu, S. Nanotechnology 2022, 33, 055403.
doi: 10.1088/1361-6528/ac302b |
[38] |
Mohami, R.; Shakeri, A.; Nasrollahzadeh, M. Sep. Purif. Technol. 2022, 285, 120373.
doi: 10.1016/j.seppur.2021.120373 |
[39] |
Wu, Y. F.; Cui, Y. C. J. Mol. Catal. 2008, 6, 526. (in Chinese)
|
(吴玉锋, 崔元臣, 分子催化, 2008, 6, 526.)
|
|
[40] |
Guillén, E.; Rico, R.; López-Romero, J. M.; Bedia, J.; Rosas, J. M.; Rodríguez-Mirasol, J.; Cordero, T. Appl. Catal., A 2009, 368, 113.
doi: 10.1016/j.apcata.2009.08.016 |
[41] |
Wu, Y. F.; Zhang, L.; Cui, Y. C.; Liu, J. S.; Yang, S. Petrochem. Technol. 2009, 38, 733. (in Chinese)
|
(吴玉锋, 张磊, 崔元臣, 刘降生, 杨帅, 石油化工, 2009, 38, 733.)
|
|
[42] |
Xue, M.; Zhang, S. Z.; Wu, Y. F.; Liu, J.; Cui, Y. C. Chin. J. Appl. Chem. 2010, 27, 787. (in Chinese)
|
(薛蔓, 张士真, 吴玉锋, 刘剑, 崔元臣, 应用化学, 2010, 27, 787.)
doi: 10.3724/SP.J.1095.2010.90577 |
|
[43] |
Coccia, F.; Tonucci, L.; d'Alessandro, N.; D'Ambrosio, P.; Bressan, M. Inorg. Chim. Acta 2013, 399, 12.
doi: 10.1016/j.ica.2012.12.035 |
[44] |
Marulasiddeshwara, M. B.; Kumar, P. R. Int. J. Biol. Macromol. 2016, 83, 326.
doi: 10.1016/j.ijbiomac.2015.11.034 pmid: 26601763 |
[45] |
Marulasiddeshwara, M. B.; Kumar, P. R. Mater. Today: Proc. 2018, 5, 20811.
|
[46] |
Nasrollahzadeh, M.; Issaabadi, Z.; Varma, R. S. ACS Omega 2019, 4, 14234.
doi: 10.1021/acsomega.9b01640 pmid: 31508546 |
[47] |
Chao, M.; Zhang, G. W.; Li, Z. Y.; Liu, L. H.; Yan, S. Q.; Chen, Y.; Shi, Y. H.; Yan, X.; Cao, C. S. ChemistrySelect 2019, 4, 766.
doi: 10.1002/slct.201803621 |
[48] |
Nasrollahzadeh, M.; Bidgoli, N. S. S.; Issaabadi, Z.; Ghavamifar, Z.; Baran, T.; Luque, R. Int. J. Biol. Macromol. 2020, 148, 265.
doi: S0141-8130(19)37383-0 pmid: 31935407 |
[49] |
Bharamanagowda, M. M.; Panchangam, R. K. Appl. Organomet. Chem. 2020, 34, 5837.
|
[50] |
Baran, T.; Sargin, I. Int. J. Biol. Macromol. 2020, 155, 814.
doi: 10.1016/j.ijbiomac.2020.04.003 |
[51] |
Chen, S. L.; Wang, G. H.; Sui, W. J.; Parvez, A. M.; Dai, L.; Si, C. L. Ind. Crops Prod. 2020, 145, 112164.
doi: 10.1016/j.indcrop.2020.112164 |
[52] |
Orooji, Y.; Pakzad, K.; Nasrollahzadeh, M.; Tajbakhsh, M. Int. J. Biol. Macromol. 2021, 182, 564.
doi: 10.1016/j.ijbiomac.2021.03.165 pmid: 33798580 |
[53] |
Ji, T.; Chen, L.; Schmitz, M.; Bao, F. S.; Zhu, J. H. Green Chem. 2015, 17, 2515.
doi: 10.1039/C5GC00123D |
[54] |
Gao, C.; Wang, X. L.; Zhai, S. R.; An, Q. D. Int. J. Biol. Macromol. 2019, 134, 202.
doi: S0141-8130(19)31997-X pmid: 31075332 |
[55] |
Gao, C.; Wang, X. L.; Wang, H. S.; Zhou, J. H.; Zhai, S. R.; An, Q. D. Int. J. Biol. Macromol. 2020, 144, 947.
doi: S0141-8130(19)36058-1 pmid: 31669463 |
[56] |
Chen, S. L.; Wang, G. H.; Pang, T. R.; Sui, W. J.; Chen, Z. C.; Si, C. L. Int. J. Biol. Macromol. 2021, 166, 893.
doi: 10.1016/j.ijbiomac.2020.10.246 |
[57] |
Yang, J.; Liu, L. Q.; An, X. Y.; Seta, F. T.; Li, C. X.; Zhang, H.; Luo, B. Y.; Hu, Q.; Zhang, R. Q.; Nie, S. X.; Cao, H. B.; Cheng, Z. B.; Liu, H. B. Ind. Crops Prod. 2021, 169, 113644.
doi: 10.1016/j.indcrop.2021.113644 |
[58] |
Zazo, J. A.; Bedia, J.; Fierro, C. M.; Pliego, G.; Casas, J. A.; Rodriguez, J. J. Catal. Today 2012, 187, 115.
doi: 10.1016/j.cattod.2011.10.003 |
[59] |
Yan, Q. G.; Wan, C. X.; Liu, J.; Gao, J. S.; Yu, F.; Zhang, J. L.; Cai, Z. Y. Green Chem. 2013, 15, 1631.
doi: 10.1039/c3gc37107g |
[60] |
Chieffi, G.; Fechler, N.; Esposito, D. RSC Adv. 2015, 5, 63691.
doi: 10.1039/C5RA06635B |
[61] |
Song, K. P.; Tang, C.; Zou, Z. J.; Wu, Y. D. Transition Met. Chem. 2020, 45, 111.
doi: 10.1007/s11243-019-00363-x |
[62] |
Chen, X. Y.; Yuan, B.; Yu, F. L.; Liu, Y. X.; Xie, C. X.; Yu, S. T. ACS Omega 2020, 5, 8902.
doi: 10.1021/acsomega.0c00533 |
[63] |
Zhang, J. R.; Yao, R. X.; Chen, J. Z.; Li, T.; Xu, Y. S. iScience 2021, 24, 103045.
doi: 10.1016/j.isci.2021.103045 |
[64] |
Wang, S. W.; Feng, N.; Zheng, J. L.; Yoon, K. B.; Lee, D.; Qu, M. J.; Zhang, X. Q.; Zhang, H. X. Polym. Adv. Technol. 2016, 27, 1351.
doi: 10.1002/pat.v27.10 |
[65] |
Zhang, X. P.; Lu, G. P.; Wang, K.; Lin, Y. M.; Wang, P. C.; Yi, W. B. Nano Res. 2022, 15, 1874.
doi: 10.1007/s12274-021-3788-y |
[66] |
Zhu, Y. C.; Wu, H.; Fang, Z.; Yang, X. B.; Guo, K.; He, W. Mol. Catal. 2021, 514, 111765.
|
[67] |
Chen, D. W.; Liang, F. B.; Feng, D. X.; Du, F. L.; Zhao, G.; Liu, H. Z.; Xian, M. Catal. Commun. 2016, 84, 159.
doi: 10.1016/j.catcom.2016.06.012 |
[68] |
Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitener, W. Science 2020, 367, 397.
doi: 10.1126/science.aay3060 pmid: 31974246 |
[1] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[2] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[3] | Jing Huang, Yihua Yang, Zhanhui Zhang, Shouxin Liu. Recent Progress on Green Methods and Technologies for Efficient Formation of Amide Bonds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 409-420. |
[4] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
[5] | Yixin Jiang, Boxiao Tang, Haibo Mao, Xuexia Chen, Yangjie Yu, Cuiying Quan, Zhaoyang Xu, Jinhui Shi, Yilin Liu. A Green, Recyclable and Carrier-Free Study for the Coupling Reaction of Alkenes with Aryl Iodides in H2O-Polyethylene Glycol (PEG-200) [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3210-3215. |
[6] | Ran Zhou, Chunmei Yuan, Tao Zhang, Piao Mao, Yi Liu, Kaini Meng, Hui Xin, Wei Xue. Design, Synthesis and Bioactivity of Chalcone Derivative Containing Quinazolinone [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3196-3209. |
[7] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[8] | Shiguo Ou, Ruirui Chai, Jiahao Li, Dawei Wang, Xinxin Sang. Metal-Organic Framework Derived Phytate-Iron for Efficient Synthesis of 2-Arylbenzoxazole via Hydrogen Transfer Strategy [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2934-2945. |
[9] | Xu Liao, Zeyu Wang, Wufei Tang, Jinqing Lin. Progress in Porous Organic Polymer for Chemical Fixation of Carnbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2699-2710. |
[10] | Kai Lu, Haoqi Qu, Xi Chen, Hui Qiu, Jing Zheng, Mengtao Ma. Catalyst-Free and Solvent-Free Hydroboration of Alkynes and Alkenes with Catecholborane [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2197-2205. |
[11] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
[12] | Linsheng Bai, Peng Hong, Anguo Ying. Research Progress of Functional Polyacrylonitrile Fiber in Promoting Organic Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1241-1270. |
[13] | Qian Dou, Taimin Wang, Lijing Fang, Hongbin Zhai, Bin Cheng. Recent Development of Photoinduced Iron-Catalysis in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1386-1415. |
[14] | Shiquan Gao, Chuangjun Liu, Junfeng Yang, Junliang Zhang. Cobalt-Catalyzed Electrochemical Reductive Coupling of Alkynes and Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1559-1565. |
[15] | Biao Ma, Miaomiao Zhang, Zhanyu Li, Jinsong Peng, Chunxia Chen. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 455-470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||