Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (9): 2774-2792.DOI: 10.6023/cjoc202203008 Previous Articles Next Articles
REVIEWS
收稿日期:
2022-03-02
修回日期:
2022-05-07
发布日期:
2022-05-31
通讯作者:
赵军锋
基金资助:
Changliu Wanga, Yongli Zhaoa, Junfeng Zhaob()
Received:
2022-03-02
Revised:
2022-05-07
Published:
2022-05-31
Contact:
Junfeng Zhao
Supported by:
Share
Changliu Wang, Yongli Zhao, Junfeng Zhao. Recent Advances in Chemical Protein Modification via Cysteine[J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2774-2792.
[1] |
Walsh, C. T.; Garneau-Tsodikova, S.; Gatto, G. J. Jr. Angew. Chem. Int. Ed. 2005, 44, 7342.
doi: 10.1002/anie.200501023 |
[2] |
Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, P. H. J. Am. Chem. Soc. 2018, 140, 11942.
doi: 10.1021/jacs.8b04525 pmid: 30125122 |
[3] |
Bucci, M. Nat. Chem. Biol. 2018, 14, 525.
|
[4] |
Diallo, I.; Seve, M.; Cunin, V.; Minassian, F.; Poisson, J.-F.; Michelland, S.; Bourgoin-Voillard, S. Expert Rev. Proteomics 2019, 16, 139.
doi: 10.1080/14789450.2019.1559061 |
[5] |
Doerr, A. Nat. Med. 2018, 15, 651.
|
[6] |
Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13.
doi: 10.1038/nchembio0605-13 |
[7] |
Kennedy, P. J.; Oliveira, C.; Granja, P. L. Pharmacol. Ther. 2017, 177, 129.
doi: 10.1016/j.pharmthera.2017.03.004 |
[8] |
Lawrence, P. B.; Price, J. L. Curr. Opin. Chem. Biol. 2016, 34, 88.
doi: S1367-5931(16)30103-X pmid: 27580482 |
[9] |
Schlatzer, T.; Kriegesmann, J.; Schroder, H.; Trobe, M.; Lembacher-Fadum, C.; Santner, S.; Kravchuk, A. V.; Becker, C. F. W.; Breinbauer, R. J. Am. Chem. Soc. 2019, 141, 14931.
doi: 10.1021/jacs.9b08279 pmid: 31469558 |
[10] |
(a) Yang, M.-Y.; Chen, P. Acta Chim. Sinica 2015, 73, 783. (in Chinese)
pmid: 31657212 |
(杨麦云, 陈鹏, 化学学报, 2015, 73, 783.)
doi: 10.6023/A15030214 pmid: 31657212 |
|
(b) Zheng, Y.; Zhai, L.; Zhao, Y.; Wu, C. J. Am. Chem. Soc. 2015, 137, 15094.
doi: 10.1021/jacs.5b10779 pmid: 31657212 |
|
(c) Luo, Q.; Tao, Y.; Sheng, W.; Lu, J.; Wang, H. Nat. Commun. 2019, 10, 142.
doi: 10.1038/s41467-018-08010-2 pmid: 31657212 |
|
(d) Zhang, Y.; Zhang, Q.; Wong, C. T. T.; Li, X. J. Am. Chem. Soc. 2019, 141, 12274.
doi: 10.1021/jacs.9b03623 pmid: 31657212 |
|
(e) Zhang, Q.; Zhang, Y.; Liu, H.; Chow, H. Y.; Tian, R.; Eva Fung, Y. M.; Li, X. Biochemistry 2020, 59, 175.
doi: 10.1021/acs.biochem.9b00787 pmid: 31657212 |
|
(f) Zhao, K.; Lim, Y.-J.; Liu, Z.; Long, H.; Sun, Y.; Hu, J.-J.; Zhao, C.; Tao, Y.; Zhang, X.; Li, D.; Li, Y.-M.; Liu, C. Proc. Natl. Acad. Sci. 2020, 117, 20305.
doi: 10.1073/pnas.1922741117 pmid: 31657212 |
|
(g) Wang, S.; Zhou, Q.; Chen, X.; Luo, R.-H.; Li, Y.; Liu, X.; Yang, L.-M.; Zheng, Y.-T.; Wang, P. Nat. Commun. 2021, 12, 2257.
doi: 10.1038/s41467-021-22654-7 pmid: 31657212 |
|
[11] |
Chambers, I.; Frampton, J.; Goldfarb, P.; Affara, N.; Mcbain, W.; Harrison, P. R. EMBO J. 1986, 5, 1221.
doi: 10.1002/j.1460-2075.1986.tb04350.x pmid: 3015592 |
[12] |
Giles, N. M.; Watts, A. B.; Giles, G. I.; Fry, F. H.; Littlechild, J. A.; Jacob, C. Chem. Biol. 2003, 10, 677.
doi: 10.1016/S1074-5521(03)00174-1 |
[13] |
Marino, S. M.; Gladyshev, V. N. J. Mol. Biol. 2010, 404, 902.
doi: 10.1016/j.jmb.2010.09.027 |
[14] |
(a) Chalker, J. M.; Bernardes, G. J.; Lin, Y. A.; Davis, B. G. Chem.- Asian J. 2009, 4, 630.
doi: 10.1002/asia.200800427 pmid: 26789551 |
(b) Gunnoo, S. B.; Madder, A. ChemBioChem 2016, 17, 529.
doi: 10.1002/cbic.201500667 pmid: 26789551 |
|
(c) Ochtrop, P.; Hackenberger, C. P. R. Curr. Opin. Chem. Biol. 2020, 58, 28.
doi: 10.1016/j.cbpa.2020.04.017 pmid: 26789551 |
|
[15] |
Goddard, D. R., Michaelis, L. J. Biol. Chem. 1935, 112, 361.
doi: 10.1016/S0021-9258(18)74993-4 |
[16] |
Nielsen, M. L.; Vermeulen, M.; Bonaldi, T.; Cox, J.; Moroder, L.; Mann, M. Nat. Med. 2008, 5, 459.
doi: 10.1038/7458 |
[17] |
Zhang, C.; Vinogradova, E. V.; Spokoyny, A. M.; Buchwald, S. L.; Pentelute, B. L. Angew. Chem., Int. Ed. 2019, 58, 4810.
doi: 10.1002/anie.201806009 pmid: 30399206 |
[18] |
Chalker, J. M.; Wood, C. S. C.; Davis, B. G. J. Am. Chem. Soc. 2009, 131, 16346.
doi: 10.1021/ja907150m pmid: 19852502 |
[19] |
Spokoyny, A. M.; Zou, Y.; Ling, J. J.; Yu, H.; Lin, Y. S.; Pentelute, B. L. J. Am. Chem. Soc. 2013, 135, 5946.
doi: 10.1021/ja400119t |
[20] |
Zhang, C.; Spokoyny, A. M.; Zou, Y.; Simon, M. D.; Pentelute, B. L. Angew. Chem., Int. Ed. 2013, 52, 14001.
doi: 10.1002/anie.201306430 pmid: 24222025 |
[21] |
Zhang, C.; Welborn, M.; Zhu, T.; Yang, N. J.; Santos, M. S.; Van Voorhis, T.; Pentelute, B. L. Nat. Chem. 2015, 8, 120.
doi: 10.1038/nchem.2413 |
[22] |
Embaby, A. M.; Schoffelen, S.; Kofoed, C.; Meldal, M.; Diness, F. Angew. Chem., Int. Ed. 2018, 57, 8022.
doi: 10.1002/anie.201712589 pmid: 29469231 |
[23] |
Bell, O.; Tiwari, V. K.; Thoma, N. H.; Schubeler, D. Nat. Rev. Genet. 2011, 12, 554.
|
[24] |
Chu, G.-C.; Pan, M.; Li, J.; Liu, S.; Zuo, C.; Tong, Z.-B.; Bai, J.-S.; Gong, Q.; Ai, H.; Fan, J.; Meng, X.; Huang, Y.-C.; Shi, J.; Deng, H.; Tian, C.; Li, Y.-M.; Liu, L. J. Am. Chem. Soc. 2019, 141, 3654.
doi: 10.1021/jacs.8b13213 |
[25] |
Diamantis, N.; Banerji, U. Br. J. Cancer 2016, 114, 362.
doi: 10.1038/bjc.2015.435 |
[26] |
Walsh, S. J.; Bargh, J. D.; Dannheim, F. M.; Hanby, A. R.; Seki, H.; Counsell, A. J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; Isidro-Llobet, A.; Parker, J. S.; Carroll, J. S.; Spring, D. R. Chem. Soc. Rev. 2021, 50, 1305.
doi: 10.1039/D0CS00310G |
[27] |
(a) Tedaldi, L. M.; Smith, M. E.; Nathani, R. I.; Baker, J. R. Chem. Commun. 2009, 6583.
pmid: 34760149 |
(b) Kang, M. S.; Kong, T. W. S.; Khoo, J. Y. X.; Loh, T.-P. Chem. Sci. 2021, 12, 13613.
doi: 10.1039/d1sc02973h pmid: 34760149 |
|
[28] |
Christie, R. J.; Fleming, R.; Bezabeh, B.; Woods, R.; Mao, S.; Harper, J.; Joseph, A.; Wang, Q.; Xu, Z.-Q.; Wu, H.; Gao, C.; Dimasi, N. J. Controlled Release 2015, 220, 660.
doi: 10.1016/j.jconrel.2015.09.032 |
[29] |
Lyon, R. P.; Setter, J. R.; Bovee, T. D.; Doronina, S. O.; Hunter, J. H.; Anderson, M. E.; Balasubramanian, C. L.; Duniho, S. M.; Leiske, C. I.; Li, F.; Senter, P. D. Nat. Biotechnol. 2014, 32, 1059.
doi: 10.1038/nbt.2968 |
[30] |
Ravasco, J.; Faustino, H.; Trindade, A.; Gois, P. M. P. Chem.-Eur. J. 2019, 25, 43.
doi: 10.1002/chem.201803174 pmid: 30095185 |
[31] |
Huang, W.; Wu, X.; Gao, X.; Yu, Y.; Lei, H.; Zhu, Z.; Shi, Y.; Chen, Y.; Qin, M.; Wang, W.; Cao, Y. Nat. Chem. 2019, 11, 310.
doi: 10.1038/s41557-018-0209-2 |
[32] |
Bernardim, B.; Cal, P. M.; Matos, M. J.; Oliveira, B. L.; Martinez-Saez, N.; Albuquerque, I. S.; Perkins, E.; Corzana, F.; Burtoloso, A. C.; Jimenez-Oses, G.; Bernardes, G. J. Nat. Commun. 2016, 7, 13128.
doi: 10.1038/ncomms13128 pmid: 27782215 |
[33] |
Ariyasu, S.; Hayashi, H.; Xing, B.; Chiba, S. Bioconjugate Chem. 2017, 28, 897.
doi: 10.1021/acs.bioconjchem.7b00024 pmid: 28212596 |
[34] |
Zhang, Y.; Zhou, X.; Xie, Y.; Greenberg, M. M.; Xi, Z.; Zhou, C. J. Am. Chem. Soc. 2017, 139, 6146.
doi: 10.1021/jacs.7b00670 |
[35] |
Zhang, Y.; Zang, C.; An, G.; Shang, M.; Cui, Z.; Chen, G.; Xi, Z.; Zhou, C. Nat. Commun. 2020, 11, 1015.
doi: 10.1038/s41467-020-14757-4 |
[36] |
Yu, J.; Yang, X.; Sun, Y.; Yin, Z. Angew. Chem., Int. Ed. 2018, 57, 11598.
doi: 10.1002/anie.201804801 |
[37] |
Huang, R.; Li, Z.; Sheng, Y.; Yu, J.; Wu, Y.; Zhan, Y.; Chen, H.; Jiang, B. Org. Lett. 2018, 20, 6526.
doi: 10.1021/acs.orglett.8b02849 pmid: 30284842 |
[38] |
Hoogenboom, R. Angew. Chem., Int. Ed. 2010, 49, 3415.
doi: 10.1002/anie.201000401 pmid: 20394091 |
[39] |
(a) Frei, R.; Waser, J. J. Am. Chem. Soc. 2013, 135, 9620.
doi: 10.1021/ja4044196 |
(b) Frei, R.; Wodrich, M. D.; Hari, D. P.; Borin, P.-A.; Chauvier, C.; Waser, J. J. Am. Chem. Soc. 2014, 136, 16563.
doi: 10.1021/ja5083014 |
|
[40] |
Abegg, D.; Frei, R.; Cerato, L.; Prasad Hari, D.; Wang, C.; Waser, J.; Adibekian, A. Angew. Chem., Int. Ed. 2015, 54, 10852.
doi: 10.1002/anie.201505641 |
[41] |
Tessier, R.; Ceballos, J.; Guidotti, N.; Simonet-Davin, R.; Fierz, B.; Waser, J. Chem 2019, 5, 2243.
doi: 10.1016/j.chempr.2019.06.002 |
[42] |
Tessier, R.; Nandi, R. K.; Dwyer, B. G.; Abegg, D.; Sornay, C.; Ceballos, J.; Erb, S.; Cianferani, S.; Wagner, A.; Chaubet, G.; Adibekian, A.; Waser, J. Angew. Chem., Int. Ed. 2020, 59, 10961.
doi: 10.1002/anie.202002626 pmid: 32233093 |
[43] |
(a) Ceballos, J.; Grinhagena, E.; Sangouard, G.; Heinis, C.; Waser, J. Angew. Chem., Int. Ed. 2021, 60, 9022.
doi: 10.1002/anie.202014511 pmid: 33450121 |
(b) Ceballos, J.; Grinhagena, E.; Sangouard, G.; Heinis, C.; Waser, J. Angew. Chem., Int. Ed. 2021, 60, 9022.
doi: 10.1002/anie.202014511 pmid: 33450121 |
|
(c) Allouche, E. M. D.; Grinhagena, E.; Waser, J. Angew. Chem., Int. Ed. 2021, 60, 2.
doi: 10.1002/anie.202014556 pmid: 33450121 |
|
[44] |
Zhang, C.; Dai, P.; Vinogradov, A. A.; Gates, Z. P.; Pentelute, B. L. Angew. Chem., Int. Ed. 2018, 57, 6459.
doi: 10.1002/anie.201800860 pmid: 29575377 |
[45] |
Laserna, V.; Istrate, A.; Kafuta, K.; Hakala, T. A.; Knowles, T. P. J.; Alcarazo, M.; Bernardes, G. J. L. Bioconjugate Chem. 2021, 32, 1570.
doi: 10.1021/acs.bioconjchem.1c00317 pmid: 34232618 |
[46] |
Truce, W. E.; Tichenor, G. J. W. J. Org. Chem. 1972, 37, 2391.
doi: 10.1021/jo00980a007 |
[47] |
Arjona, O.; Iradier, F.; Medel, R.; Plumet, J. J. Org. Chem. 1999, 64, 6090.
doi: 10.1021/jo990308c |
[48] |
Arjona, O.; Medel, R. o.; Rojas, J.; Costa, A. M.; Vilarrasa, J. Tetrahedron Lett. 2003, 44, 6369.
doi: 10.1016/S0040-4039(03)01614-9 |
[49] |
Shiu, H. Y.; Chan, T. C.; Ho, C. M.; Liu, Y.; Wong, M. K.; Che, C. M. Chem.-Eur. J. 2009, 15, 3839.
doi: 10.1002/chem.200800669 |
[50] |
Matos, M. J.; Navo, C. D.; Hakala, T.; Ferhati, X.; Guerreiro, A.; Hartmann, D.; Bernardim, B.; Saar, K. L.; Companon, I.; Corzana, F.; Knowles, T. P. J.; Jimenez-Oses, G.; Bernardes, G. J. L. Angew. Chem., Int. Ed. 2019, 58, 6640.
doi: 10.1002/anie.201901405 |
[51] |
Vallee, M. R.; Majkut, P.; Wilkening, I.; Weise, C.; Muller, G.; Hackenberger, C. P. Org. Lett. 2011, 13, 5440.
doi: 10.1021/ol2020175 |
[52] |
(a) Kasper, M. A.; Glanz, M.; Stengl, A.; Penkert, M.; Klenk, S.; Sauer, T.; Schumacher, D.; Helma, J.; Krause, E.; Cardoso, M. C.; Leonhardt, H.; Hackenberger, C. P. R. Angew. Chem., Int. Ed. 2019, 58, 11625.
doi: 10.1002/anie.201814715 |
(b) Park, Y.; Baumann, A. L.; Moon, H.; Byrne, S.; Kasper, M. A.; Hwang, S.; Sun, H.; Baik, M. H.; Hackenberger, C. P. R. Chem. Sci. 2021, 12, 8141.
doi: 10.1039/D1SC01730F |
|
[53] |
Kasper, M.-A.; Glanz, M.; Oder, A.; Schmieder, P.; von Kries, J. P.; Hackenberger, C. P. R. Chem. Sci. 2019, 10, 6322.
doi: 10.1039/C9SC01345H |
[54] |
Kasper, M. A.; Stengl, A.; Ochtrop, P.; Gerlach, M.; Stoschek, T.; Schumacher, D.; Helma, J.; Penkert, M.; Krause, E.; Leonhardt, H.; Hackenberger, C. P. R. Angew. Chem., Int. Ed. 2019, 58, 11631.
doi: 10.1002/anie.201904193 |
[55] |
Stieger, C. E.; Franz, L.; Korlin, F.; Hackenberger, C. P. R. Angew. Chem., Int. Ed. 2021, 60, 1.
|
[56] |
Abbas, A.; Xing, B.; Loh, T.-P. Angew. Chem., Int. Ed. 2014, 53, 7491.
doi: 10.1002/anie.201403121 pmid: 24889524 |
[57] |
(a) Peng, Z.; Zhang, Z.; Tu, Y.; Zeng, X.; Zhao, J. Org. Lett. 2018, 20, 5688.
doi: 10.1021/acs.orglett.8b02409 |
(b) Peng, Z.; Zhang, Z.; Zeng, X.; Tu, Y.; Zhao, J. Adv. Synth. Catal. 2019, 361, 4489.
doi: 10.1002/adsc.201900734 |
|
[58] |
Wang, C.; Zhao, Z.; Ghadir, R.; Li, Y.; Zhao, Y.; Metanis, N.; Zhao, J. ChemRxiv 2021, doi: 10.26434/chemrxiv-2021-9gxpp.
doi: 10.26434/chemrxiv-2021-9gxpp |
[59] |
(a) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540.
doi: 10.1039/b907809f pmid: 20111778 |
(b) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787.
doi: 10.1021/acs.chemrev.6b00567 pmid: 20111778 |
|
[60] |
(a) Simmons, R. L.; Yu, R. T.; Myers, A. G. J. Am. Chem. Soc. 2011, 133, 15870.
doi: 10.1021/ja206339s |
(b) Jbara, M.; Maity, S. K.; Brik, A. Angew. Chem., Int. Ed. 2017, 56, 10644.
doi: 10.1002/anie.201702370 |
|
(c) Bai, Z.; Cai, C.; Sheng, W.; Ren, Y.; Wang, H. Angew. Chem., Int. Ed. 2020, 59, 14686.
doi: 10.1002/anie.202007226 |
|
(d) Zhang, X.; Lu, G.; Sun, M.; Mahankali, M.; Ma, Y.; Zhang, M.; Hua, W.; Hu, Y.; Wang, Q.; Chen, J.; He, G.; Qi, X.; Shen, W.; Liu, P.; Chen, G. Nat. Chem. 2018, 10, 540.
doi: 10.1038/s41557-018-0006-y |
|
[61] |
Kundu, R.; Ball, Z. T. Chem. Commun. 2013, 49, 4166.
doi: 10.1039/C2CC37323H |
[62] |
Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.; Buchwald, S. L. Nature 2015, 526, 687.
doi: 10.1038/nature15739 |
[63] |
Rojas, A. J.; Zhang, C.; Vinogradova, E. V.; Buchwald, N. H.; Reilly, J.; Pentelute, B. L.; Buchwald, S. L. Chem. Sci. 2017, 8, 4257.
doi: 10.1039/C6SC05454D |
[64] |
Rojas, A. J.; Pentelute, B. L.; Buchwald, S. L. Org. Lett. 2017, 19, 4263.
doi: 10.1021/acs.orglett.7b01911 |
[65] |
Jbara, M.; Pomplun, S.; Schissel, C. K.; Hawken, S. W.; Boija, A.; Klein, I.; Rodriguez, J.; Buchwald, S. L.; Pentelute, B. L. J. Am. Chem. Soc. 2021, 143, 11788.
doi: 10.1021/jacs.1c05666 |
[66] |
Messina, M. S.; Stauber, J. M.; Waddington, M. A.; Rheingold, A. L.; Maynard, H. D.; Spokoyny, A. M., J. Am. Chem. Soc. 2018, 140, 7065.
doi: 10.1021/jacs.8b04115 pmid: 29790740 |
[67] |
Kulkarni, S. S.; Sayers, J.; Premdjee, B.; Payne, R. J. Nat. Rev. Chem. 2018, 2, 0122.
doi: 10.1038/s41570-018-0122 |
[68] |
Li, F.; Allahverdi, A.; Yang, R.; Lua, G. B. J.; Zhang, X.; Cao, Y.; Korolev, N.; Nordenskiöld, L.; Liu, C.-F. Angew. Chem., Int. Ed. 2011, 50, 9611.
doi: 10.1002/anie.201103754 |
[69] |
Arumugam, S.; Guo, J.; Mbua, N. E.; Friscourt, F.; Lin, N.; Nekongo, E.; Boons, G.-J.; Popik, V. V. Chem. Sci. 2014, 5, 1591.
doi: 10.1039/C3SC51691A |
[70] |
(a) Hu, K.; Geng, H.; Zhang, Q.; Liu, Q.; Xie, M.; Sun, C.; Li, W.; Lin, H.; Jiang, F.; Wang, T.; Wu, Y.-D.; Li, Z. Angew. Chem., Int. Ed. 2016, 55, 8013.
doi: 10.1002/anie.201602806 |
(b) Tian, Y.; Li, J.; Zhao, H.; Zeng, X.; Wang, D.; Liu, Q.; Niu, X.; Huang, X.; Xu, N.; Li, Z. Chem. Sci. 2016, 7, 3325.
doi: 10.1039/C6SC00106H |
|
[71] |
Zhao, G.; Kaur, S.; Wang, T. Org. Lett. 2017, 19, 3291.
doi: 10.1021/acs.orglett.7b01441 |
[72] |
Vara, B. A.; Li, X.; Berritt, S.; Walters, C. R.; Petersson, E. J.; Molander, G. A. Chem. Sci. 2018, 9, 336.
doi: 10.1039/C7SC04292B |
[73] |
Beard, H. A.; Hauser, J. R.; Walko, M.; George, R. M.; Wilson, A. J.; Bon, R. S. Commun. Chem. 2019, 2, 133.
doi: 10.1038/s42004-019-0235-z |
[74] |
Bulaj, G. Biotechnol. Adv. 2005, 23, 87.
doi: 10.1016/j.biotechadv.2004.09.002 |
[75] |
(a) Chalker, J. M.; Bernardes, G. J. L.; Davis, B. G. Acc. Chem. Res. 2011, 44, 730.
doi: 10.1021/ar200056q pmid: 22173886 |
(b) van Kasteren, S. Biochem. Soc. Trans. 2012, 40, 929.
doi: 10.1042/BST20120144 pmid: 22173886 |
|
(c) Bernardes, G. J. L.; Casi, G.; Trissel, S.; Hartmann, I.; Schwager, K.; Scheuermann, J.; Neri, D. Angew. Chem., Int. Ed. 2012, 51, 941.
doi: 10.1002/anie.201106527 pmid: 22173886 |
|
(d) List, T.; Casi, G.; Neri, D. Mol. Cancer Ther. 2014, 13, 2641.
doi: 10.1158/1535-7163.MCT-14-0599 pmid: 22173886 |
|
[76] |
Dawson, P. E.; Muir, T. W.; Clarklewis, I.; Kent, S. B. H. Science 1994, 266, 776.
pmid: 7973629 |
[77] |
Faustino, H.; Silva, M. J. S. A.; Veiros, L. F.; Bernardes, G. J. L.; Gois, P. M. P. Chem. Sci. 2016, 7, 6280.
doi: 10.1039/c6sc90045c pmid: 30124674 |
[78] |
Zheng, X.; Li, Z.; Gao, W.; Meng, X.; Li, X.; Luk, L. Y. P.; Zhao, Y.; Tsai, Y.-H.; Wu, C. J. Am. Chem. Soc. 2020, 142, 5097.
doi: 10.1021/jacs.9b11875 |
[79] |
Wu, Y.; Li, C.; Fan, S.; Zhao, Y.; Wu, C. Bioconjugate Chem. 2021, 32, 2065.
doi: 10.1021/acs.bioconjchem.1c00378 |
[80] |
King, T. A.; Mandrup Kandemir, J.; Walsh, S. J.; Spring, D. R., Chem. Soc. Rev. 2021, 50, 39.
doi: 10.1039/D0CS00344A |
[81] |
Zhao, Z.; Shimon, D.; Metanis, N. J. Am. Chem. Soc. 2021, 143, 12817.
doi: 10.1021/jacs.1c06101 |
[82] |
Verhoog, S.; Kee, C. W.; Wang, Y.; Khotavivattana, T.; Wilson, T. C.; Kersemans, V.; Smart, S.; Tredwell, M.; Davis, B. G.; Gouverneur, V. J. Am. Chem. Soc. 2018, 140, 1572.
doi: 10.1021/jacs.7b10227 pmid: 29301394 |
[83] |
Deng, J.-R.; Chung, S.-F.; Leung, A. S.-L.; Yip, W.-M.; Yang, B.; Choi, M.-C.; Cui, J.-F.; Kung, K. K.-Y.; Zhang, Z.; Lo, K.-W.; Leung, Y.-C.; Wong, M.-K. Commun. Chem. 2019, 2, 93.
doi: 10.1038/s42004-019-0193-5 |
[84] |
Wan, L.-Q.; Zhang, X.; Zou, Y.; Shi, R.; Cao, J.-G.; Xu, S.-Y.; Deng, L.-F.; Zhou, L.; Gong, Y.; Shu, X.; Lee, G. Y.; Ren, H.; Dai, L.; Qi, S.; Houk, K. N.; Niu, D. J. Am. Chem. Soc. 2021, 143, 11919.
doi: 10.1021/jacs.1c05156 |
[85] |
Toda, N.; Asano, S.; Barbas III, C. F. Angew. Chem., Int. Ed. 2013, 52, 12592.
doi: 10.1002/anie.201306241 |
[86] |
Boutureira, O.; Bernardes, G. J. L.; Fernández-González, M.; Anthony, D. C.; Davis, B. G. Angew. Chem., Int. Ed. 2012, 51, 1432.
doi: 10.1002/anie.201106658 pmid: 22213253 |
[1] | Yingzhen Zhang, Dandan Jiang, Juanhua Li, Jingjing Wang, Kunming Liu, Jinbiao Liu. Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 41-53. |
[2] | Weiqing Yang, Yanbing Ge, Yuanyuan Chen, Ping Liu, Haiyan Fu, Menglin Ma. Design and Synthesis of Fluorescent 1,8-Napthalimide Derivatives and Their Identification of Cysteine [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 180-194. |
[3] | Feiran Liu, Jing Jing, Xiaoling Zhang. Research Progress of Fluorescent Probes for Cysteine Targeting Cellular Organelles [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2053-2067. |
[4] | Li Chen, Junbo Li, Dugang Chen. Recent Advances in Fluorescent Probes for Biothiols [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 611-623. |
[5] | Han Ren, Ruxiang Li, Zhijian Chen, Lili Li, Hao Wang. Modification Methods and Applications of Self-Assembly Peptides [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3983-3994. |
[6] | Zhou Xiaoqin, Cui Mengyuan, Jia Chengli, Yang Min, Ji Min, Wang Peng. Novel Ratio-Based Fluorescent Probe for Intracellular Cys Detection [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2502-2507. |
[7] | Shen Youming, Gu Biao, Liu Xin, Tang Yucai, Li Haitao. A Benzothiazole-Based Ratiometric Fluorescent Probe for Highly Selective Detection of Homocysteine and Its Bioimaging Application [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2442-2449. |
[8] | Tian Qing, Chen Shuanghu, Chen Jinglong, Liu Rui, Wang Yushi, Yang Xiaopeng, Ye Yong. A Novel Rhodamine Analogues-Based Near-Infrared Fluorescent Probe for Cys [J]. Chin. J. Org. Chem., 2019, 39(7): 2089-2093. |
[9] | Wang Jun, Hu Liangjun, Shen Jing, Jiang Jiquan, Yu Keyong, Sun Rongguo. Research Progress in the Visual Sensors/Sensing Ensembles for L-Cysteine [J]. Chin. J. Org. Chem., 2018, 38(4): 760-774. |
[10] | Zhang Wei, Yao Zijian, Deng Wei. Poly (amido amine)s with Different Branched Architecture: Synthesis, Reactivity and Their Application in Gene Delivery [J]. Chin. J. Org. Chem., 2018, 38(10): 2713-2719. |
[11] | Yang Taiqun, Dai Shan, Qin Cuifang, Huang Kehan, Chen Yuting, Pan Haifeng, Zhang Sanjun, Zhang Kun, Xu Jianhua. Selective Detection of Homocysteine by Using Poly Methyl Vinyl Ether-alt-Maleic Silver Clusters [J]. Chin. J. Org. Chem., 2016, 36(4): 867-871. |
[12] | Wang Shengqing, Shen Shili, Zhang Yanru, Dai Xi, Zhao Baoxiang. Recent Progress in Fluorescent Probes for the Detection of Biothiols [J]. Chin. J. Org. Chem., 2014, 34(9): 1717-1729. |
[13] | YANG Rui, YANG Li-Juan, DONG Si-Hua, WANG Chu-Juan, LIN Jun. Synthesis of (4R)-5,5-Dimethyl-4-benzylthiomethyl- 2-oxazolidinone [J]. Chin. J. Org. Chem., 2010, 30(01): 103-106. |
[14] | Zhou, Jiadong; Cao, Fei*; Zhang, Xiaolong; Yang, Ying; Ying, Hanjie; Wei, Ping. A Novel Method for the Synthesis of Glutathione Based on a Co-protection Strategy [J]. Chin. J. Org. Chem., 2009, 29(08): 1272-1277. |
[15] | CHEN Ke-Xi*,a,CHENG Xiang-Weib,JING Jia-Mina,SHENG Liu-Qingc. Studies on Total Synthesis of d-Biotin [J]. Chin. J. Org. Chem., 2006, 26(9): 1309-1312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||