Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (6): 2053-2067.DOI: 10.6023/cjoc202209005 Previous Articles Next Articles
收稿日期:
2022-09-05
修回日期:
2022-12-01
发布日期:
2023-01-05
基金资助:
Feiran Liua, Jing Jinga,*(), Xiaoling Zhanga,b,*()
Received:
2022-09-05
Revised:
2022-12-01
Published:
2023-01-05
Contact:
E-mail: Supported by:
Share
Feiran Liu, Jing Jing, Xiaoling Zhang. Research Progress of Fluorescent Probes for Cysteine Targeting Cellular Organelles[J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2053-2067.
[1] |
Paul, B. D.; Sbodio, J. I.; Snyder, S. H. Trends Pharmacol. Sci. 2018, 39, 513.
doi: 10.1016/j.tips.2018.02.007 |
[2] |
Shahrokhian, S. Anal. Chem. 2001, 73, 5972.
pmid: 11791568 |
[3] |
Jung, H. S.; Chen, X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2013, 42, 6019.
doi: 10.1039/c3cs60024f |
[4] |
Yin, C.; Huo, F.; Zhang, J.; Martínez-Máñez, R.; Yang, Y.; Lv, H.; Li, S. Chem. Soc. Rev. 2013, 42, 6032.
doi: 10.1039/c3cs60055f |
[5] |
Janáky, R.; Varga, V.; Hermann, A.; Saransaari, P.; Oja, S. S. Neurochem. Res. 2000, 25, 1397.
pmid: 11059810 |
[6] |
Anderson, C. L.; Iyer, S. S.; Ziegler, T. R.; Jones, D. P. Am. J. Physiol.: Regul., Integr. Comp. Physiol. 2007, 293, R1069.
|
[7] |
Jones, D. P.; Go, Y.-M.; Anderson, C. L.; Ziegler, T. R.; Kinkade Jr, J. M.; Kirlin, W. G. FASEB J. 2004, 18, 1246.
doi: 10.1096/fj.03-0971fje pmid: 15180957 |
[8] |
Banjac, A.; Perisic, T.; Sato, H.; Seiler, A.; Bannai, S.; Weiss, N.; Kölle, P.; Tschoep, K.; Issels, R. D.; Daniel, P. T.; Conrad, M.; Bornkamm, G. W. Oncogene 2008, 27, 1618.
doi: 10.1038/sj.onc.1210796 pmid: 17828297 |
[9] |
Zhang, R.; Yong, J.; Yuan, J.; Ping Xu, Z. Coord. Chem. Rev. 2020, 408, 213182.
doi: 10.1016/j.ccr.2020.213182 |
[10] |
Tcherkas, Y. V.; Denisenko, A. D. J. Chromatogr. A 2001, 913, 309.
pmid: 11355827 |
[11] |
Jia, D.; Li, F.; Sheng, L.; Ren, Q.; Dong, S.; Xu, S.; Mu, Y.; Miao, Y. Electrochem. Commun. 2011, 13, 1119.
doi: 10.1016/j.elecom.2011.07.013 |
[12] |
Burford, N.; Eelman, M. D.; Mahony, D. E.; Morash, M. Chem. Commun. 2003, 146.
|
[13] |
Tang, Y.; Ma, Y.; Yin, J.; Lin, W. Chem. Soc. Rev. 2019, 48, 4036.
doi: 10.1039/C8CS00956B |
[14] |
Zhu, H.; Fan, J.; Du, J.; Peng, X. Acc. Chem. Res. 2016, 49, 2115.
doi: 10.1021/acs.accounts.6b00292 |
[15] |
Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T. D.; Lin, W. Chem. Soc. Rev. 2021, 50, 12098.
doi: 10.1039/D1CS00645B |
[16] |
Qi, Y.-L.; Wang, H.-R.; Chen, L.-L.; Duan, Y.-T.; Yang, S.-Y.; Zhu, H.-L. Chem. Soc. Rev. 2022, 51, 7752.
doi: 10.1039/d1cs01167g pmid: 36052828 |
[17] |
He, D.; Zhang, L.; Sun, Y. Coord. Chem. Rev. 2022, 461, 214507.
doi: 10.1016/j.ccr.2022.214507 |
[18] |
Dong, J.; Lu, G.; Tu, Y.; Fan, C. New J. Chem. 2022, 46, 10995.
doi: 10.1039/D1NJ06244A |
[19] |
Liu, W.; Chen, J.; Xu, Z. Coord. Chem. Rev. 2021, 429, 213638.
doi: 10.1016/j.ccr.2020.213638 |
[20] |
Yang, Q.; Lan, T.; He, W. Dyes Pigm. 2021, 186, 108997.
doi: 10.1016/j.dyepig.2020.108997 |
[21] |
Dai, J.; Ma, C.; Zhang, P.; Fu, Y.; Shen, B. Dyes Pigm. 2020, 177, 108321.
doi: 10.1016/j.dyepig.2020.108321 |
[22] |
Bock, F. J.; Tait, S. W. G. Nat. Rev. Mol. Cell Biol. 2020, 21, 85.
doi: 10.1038/s41580-019-0173-8 |
[23] |
Pfanner, N.; Warscheid, B.; Wiedemann, N. Nat. Rev. Mol. Cell Biol. 2019, 20, 267.
doi: 10.1038/s41580-018-0092-0 |
[24] |
Chan, D. C. Annu. Rev. Pathol.: Mech. Dis. 2020, 15, 235.
doi: 10.1146/pathmechdis.2020.15.issue-1 |
[25] |
Bindoli, A.; Fukuto, J. M.; Forman, H. J. Antioxid. Redox Signaling 2008, 10, 1549.
doi: 10.1089/ars.2008.2063 |
[26] |
Bak, D. W.; Weerapana, E. Mol. BioSyst. 2015, 11, 678.
doi: 10.1039/c4mb00571f pmid: 25519845 |
[27] |
Badgley, M. A.; Kremer, D. M.; Maurer, H. C.; DelGiorno, K. E.; Lee, H.-J.; Purohit, V.; Sagalovskiy, I. R.; Ma, A.; Kapilian, J.; Firl, C. E. M.; Decker, A. R.; Sastra, S. A.; Palermo, C. F.; Andrade, L. R.; Sajjakulnukit, P.; Zhang, L.; Tolstyka, Z. P.; Hirschhorn, T.; Lamb, C.; Liu, T.; Gu, W.; Seeley, E. S.; Stone, E.; Georgiou, G.; Manor, U.; Iuga, A.; Wahl, G. M.; Stockwell, B. R.; Lyssiotis, C. A.; Olive, K. P. Science 2020, 368, 85.
doi: 10.1126/science.aaw9872 |
[28] |
Gao, M.; Yi, J.; Zhu, J.; Minikes, A. M.; Monian, P.; Thompson, C. B.; Jiang, X. Mol. Cell 2019, 73, 354.
doi: 10.1016/j.molcel.2018.10.042 |
[29] |
Wang, H.; Fang, B.; Peng, B.; Wang, L.; Xue, Y.; Bai, H.; Lu, S.; Voelcker, N. H.; Li, L.; Fu, L.; Huang, W. Front. Chem. 2021, 9, 683220.
doi: 10.3389/fchem.2021.683220 |
[30] |
Sun, C.; Du, W.; Wang, B.; Dong, B.; Wang, B. BMC Chem. 2020, 14, 21.
doi: 10.1186/s13065-020-00677-3 |
[31] |
Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Ouari, O.; Vasquez- Vivar, J.; Cheng, G.; Lopez, M.; Kalyanaraman, B. Chem. Rev. 2017, 117, 10043.
doi: 10.1021/acs.chemrev.7b00042 pmid: 28654243 |
[32] |
Shindy, H. A. Dyes Pigm. 2017, 145, 505.
doi: 10.1016/j.dyepig.2017.06.029 |
[33] |
Wang, R.; Yu, F.; Chen, L.; Chen, H.; Wang, L.; Zhang, W. Chem. Commun. 2012, 48, 11757.
doi: 10.1039/c2cc36088h |
[34] |
Narayanan, N.; Patonay, G. J. Org. Chem. 1995, 60, 2391.
doi: 10.1021/jo00113a018 |
[35] |
Yin, K.; Yu, F.; Zhang, W.; Chen, L. Biosens. Bioelectron. 2015, 74, 156.
doi: 10.1016/j.bios.2015.06.039 |
[36] |
Zhang, X.; He, N.; Huang, Y.; Yu, F.; Li, B.; Lv, C.; Chen, L. Sens. Actuators, B 2019, 282, 69.
doi: 10.1016/j.snb.2018.11.056 |
[37] |
Guo, T.; Chen, X.; Qu, W.; Yang, B.; Tian, R.; Geng, Z.; Wang, Z. Anal. Chem. 2022, 94, 5006.
doi: 10.1021/acs.analchem.1c04895 |
[38] |
Niu, L.; Luo, Y.; Gan, Y.; Cao, Q.; Zhu, C.; Wang, M.; Wang, J.; Zhang, W.; Wang, J. Talanta 2020, 219, 121291.
doi: 10.1016/j.talanta.2020.121291 |
[39] |
Zhang, H.; Yan, C.; Li, H.; Shi, L.; Wang, R.; Guo, Z.; Zhu, W.-H. ACS Appl. Bio Mater. 2021, 4, 2001.
doi: 10.1021/acsabm.0c00260 pmid: 35014325 |
[40] |
Yue, L.; Huang, H.; Song, W.; Lin, W. Chem. Eng. J. 2022, 441, 135981.
doi: 10.1016/j.cej.2022.135981 |
[41] |
Zhang, X.; Zhang, L.; Wang, X.; Han, X.; Huang, Y.; Li, B.; Chen, L. J. Hazard. Mater. 2021, 419, 126476.
doi: 10.1016/j.jhazmat.2021.126476 |
[42] |
Zhang, X.; Huang, Y.; Han, X.; Wang, Y.; Zhang, L.; Chen, L. Anal. Chem. 2019, 91, 14728.
doi: 10.1021/acs.analchem.9b04082 pmid: 31648519 |
[43] |
Li, H.; Kim, H.; Xu, F.; Han, J.; Yao, Q.; Wang, J.; Pu, K.; Peng, X.; Yoon, J. Chem. Soc. Rev. 2022, 51, 1795.
doi: 10.1039/D1CS00307K |
[44] |
Han, C.; Yang, H.; Chen, M.; Su, Q.; Feng, W.; Li, F. ACS Appl. Mater. Interfaces 2015, 7, 27968.
doi: 10.1021/acsami.5b10607 |
[45] |
Kim, C. Y.; Kang, H. J.; Chung, S. J.; Kim, H.-K.; Na, S.-Y.; Kim, H.-J. Anal. Chem. 2016, 88, 7178.
doi: 10.1021/acs.analchem.6b01346 |
[46] |
Zhu, X.; Yuan, L.; Hu, X.; Zhang, L.; Liang, Y.; He, S.; Zhang, X.-B.; Tan, W. Sens. Actuators, B 2018, 259, 219.
doi: 10.1016/j.snb.2017.12.008 |
[47] |
Wei, Y.; Cheng, D.; Ren, T.; Li, Y.; Zeng, Z.; Yuan, L. Anal. Chem. 2016, 88, 1842.
doi: 10.1021/acs.analchem.5b04169 |
[48] |
Zhao, L.; He, X.; Li, D.; Xu, S.; Huang, Y.; Li, X.; Wang, X.; Sun, Y.; Ma, P.; Song, D. J. Mater. Chem. B 2020, 8, 7652.
doi: 10.1039/D0TB01366H |
[49] |
Wang, X.; Zha, J.; Zhang, W.; Zhang, W.; Tang, B. Analyst 2020, 145, 6119.
doi: 10.1039/d0an01364a pmid: 32840502 |
[50] |
Wang, H.; Wang, H.; Zhang, X.; Dong, M.; Huang, F.; Li, P.; Tang, B. Sens. Actuators, B 2021, 338, 129749.
doi: 10.1016/j.snb.2021.129749 |
[51] |
Niu, L.; Luo, Y.; Zhao, H.; Cao, Q.; Wang, J.; Wang, J. Anal. Lett. 2021, 54, 2666.
doi: 10.1080/00032719.2021.1881534 |
[52] |
Cai, S.; Liu, Q.; Liu, C.; He, S.; Zhao, L.; Zeng, X.; Gong, J. J. Mater. Chem. B 2022, 10, 1265.
doi: 10.1039/D1TB02639A |
[53] |
Niu, W.; Guo, L.; Li, Y.; Shuang, S.; Dong, C.; Wong, M. S. Anal. Chem. 2016, 88, 1908.
doi: 10.1021/acs.analchem.5b04329 |
[54] |
Tang, L.; Xu, D.; Tian, M.; Yan, X. J. Lumin. 2019, 208, 502.
doi: 10.1016/j.jlumin.2019.01.022 |
[55] |
Fan, L.; Zhang, W.; Wang, X.; Dong, W.; Tong, Y.; Dong, C.; Shuang, S. Analyst 2019, 144, 439.
doi: 10.1039/c8an01908h pmid: 30420979 |
[56] |
Ji, X.; Wang, N.; Zhang, J.; Xu, S.; Si, Y.; Zhao, W. Dyes Pigm. 2021, 187, 109089.
doi: 10.1016/j.dyepig.2020.109089 |
[57] |
Liu, J.; Sun, Y.-Q.; Zhang, H.; Huo, Y.; Shi, Y.; Shi, H.; Guo, W. RSC Adv. 2014, 4, 64542.
doi: 10.1039/C4RA10865E |
[58] |
Wei, Y.-N.; Lin, B.; Shu, Y.; Wang, J.-H. Analyst 2021, 146, 4642.
doi: 10.1039/D1AN00758K |
[59] |
Ren, T.-B.; Zhang, Q.-L.; Su, D.; Zhang, X.-X.; Yuan, L.; Zhang, X.-B. Chem. Sci. 2018, 9, 5461.
doi: 10.1039/C8SC01673A |
[60] |
Yuan, L.; Lin, W.; Zhao, S.; Gao, W.; Chen, B.; He, L.; Zhu, S. J. Am. Chem. Soc. 2012, 134, 13510.
doi: 10.1021/ja305802v pmid: 22816866 |
[61] |
Xia, S.; Zhang, Y.; Fang, M.; Mikesell, L.; Steenwinkel, T. E.; Wan, S.; Phillips, T.; Luck, R. L.; Werner, T.; Liu, H. ChemBioChem 2019, 20, 1986.
doi: 10.1002/cbic.v20.15 |
[62] |
Yang, X.-Z.; Wei, X.-R.; Sun, R.; Xu, Y.-J.; Ge, J.-F. Talanta 2020, 209, 120580.
doi: 10.1016/j.talanta.2019.120580 |
[63] |
Chen, Y.; Zhong, X.; Yang, X.; Zhu, S.; Jiang, Y.; Jin, C. Chem. Commun. 2021, 57, 8198.
doi: 10.1039/D1CC03307G |
[64] |
Zhang, P.; Guo, Z.-Q.; Yan, C.-X.; Zhu, W.-H. Chin. Chem. Lett. 2017, 28, 1952.
doi: 10.1016/j.cclet.2017.08.038 |
[65] |
Huang, Y.; Zhou, Q.; Feng, Y.; Zhang, W.; Fang, G.; Fang, M.; Chen, M.; Xu, C.; Meng, X. Chem. Commun. 2018, 54, 10495.
doi: 10.1039/C8CC05594G |
[66] |
Yue, Y.; Huo, F.; Pei, X.; Wang, Y.; Yin, C. Anal. Chem. 2020, 92, 6598.
doi: 10.1021/acs.analchem.0c00363 |
[67] |
Li, H.; Shi, W.; Li, X.; Hu, Y.; Fang, Y.; Ma, H. J. Am. Chem. Soc. 2019, 141, 18301.
doi: 10.1021/jacs.9b09722 |
[68] |
Zhang, J.; Hao, X.; Sang, W.; Yan, Q. Small 2017, 13, 1701601.
doi: 10.1002/smll.v13.39 |
[69] |
Zhao, X.; Ji, H.; Hasrat, K.; Misal, S.; He, F.; Dai, Y.; Ma, F.; Qi, Z. Anal. Chim. Acta 2020, 1107, 172.
doi: 10.1016/j.aca.2020.02.017 |
[70] |
Luzio, J. P.; Pryor, P. R.; Bright, N. A. Nat. Rev. Mol. Cell Biol. 2007, 8, 622.
doi: 10.1038/nrm2217 |
[71] |
Lawrence, R. E.; Zoncu, R. Nat. Cell Biol. 2019, 21, 133.
doi: 10.1038/s41556-018-0244-7 pmid: 30602725 |
[72] |
Lie, P. P. Y.; Nixon, R. A. Neurobiol. Dis. 2019, 122, 94.
doi: 10.1016/j.nbd.2018.05.015 |
[73] |
Yim, W. W.-Y.; Mizushima, N. Cell Discovery 2020, 6, 6.
doi: 10.1038/s41421-020-0141-7 |
[74] |
Mego, J. L. Biochem. J. 1984, 218, 775.
pmid: 6721834 |
[75] |
Lloyd, J. B. Biochem. J. 1986, 237, 271.
pmid: 3800880 |
[76] |
Pisoni, R. L.; Acker, T. L.; Lisowski, K. M.; Lemons, R. M.; Thoene, J. G. J. Cell Biol. 1990, 110, 327.
pmid: 2404990 |
[77] |
Sulzer, D.; Zecca, L. Neurotox. Res. 1999, 1, 181.
doi: 10.1007/BF03033289 |
[78] |
Gahl, W. A.; Balog, J. Z.; Kleta, R. Ann. Intern. Med. 2007, 147, 242.
doi: 10.7326/0003-4819-147-4-200708210-00006 |
[79] |
Lim, J.; Pellois, J.-P.; Simanek, E. E. Biorg. Med. Chem. Lett. 2010, 20, 6321.
doi: 10.1016/j.bmcl.2010.07.046 |
[80] |
Chen, C.; Zhou, L.; Liu, W.; Liu, W. Anal. Chem. 2018, 90, 6138.
doi: 10.1021/acs.analchem.8b00434 |
[81] |
Tasior, M.; Poronik, Y. M.; Vakuliuk, O.; Sadowski, B.; Karczewski, M.; Gryko, D. T. J. Org. Chem. 2014, 79, 8723.
doi: 10.1021/jo501565r |
[82] |
Zhang, Y.; Zhang, Y.; Yue, Y.; Chao, J.; Huo, F.; Yin, C. Sens. Actuators, B 2020, 320, 128348.
doi: 10.1016/j.snb.2020.128348 |
[83] |
Lu, G.; Dong, J.; Fan, C.; Tu, Y.; Pu, S. Bioorg. Chem. 2022, 119, 105558.
doi: 10.1016/j.bioorg.2021.105558 |
[84] |
Zhang, H.; Li, K.; Li, L.-L.; Yu, K.-K.; Liu, X.-Y.; Li, M.-Y.; Wang, N.; Liu, Y.-H.; Yu, X.-Q. Chin. Chem. Lett. 2019, 30, 1063.
doi: 10.1016/j.cclet.2019.03.017 |
[85] |
Jing, X.; Yu, F.; Lin, W. Anal. Chim. Acta 2021, 1174, 338738.
doi: 10.1016/j.aca.2021.338738 |
[86] |
Wang, H.; Zhang, Y.; Yang, Y.; He, Z.; Wu, C.; Zhang, W.; Zhang, W.; Liu, J.; Li, P.; Tang, B. Chem. Commun. 2019, 55, 9685.
doi: 10.1039/C9CC03814K |
[87] |
Cai, S.; Liu, C.; Jiao, X.; Zhao, L.; Zeng, X. J. Mater. Chem. B 2020, 8, 2269.
doi: 10.1039/C9TB02609F |
[88] |
Liu, Q.; Liu, C.; Jiao, X.; Cai, S.; He, S.; Zhao, L.; Zeng, X.; Wang, T. Dyes Pigm. 2021, 190, 109293.
doi: 10.1016/j.dyepig.2021.109293 |
[89] |
Yue, Y.; Huo, F.; Yue, P.; Meng, X.; Salamanca, J. C.; Escobedo, J. O.; Strongin, R. M.; Yin, C. Anal. Chem. 2018, 90, 7018.
doi: 10.1021/acs.analchem.8b01406 |
[90] |
Long, Z.; Chen, L.; Dang, Y.; Chen, D.; Lou, X.; Xia, F. Talanta 2019, 204, 762.
doi: S0039-9140(19)30689-7 pmid: 31357363 |
[91] |
Wang, X.-D.; Fan, L.; Ge, J.-Y.; Li, F.; Zhang, C.-H.; Wang, J.-J.; Shuang, S.-M.; Dong, C. Spectrochim. Acta, Part A 2019, 221, 117175.
doi: 10.1016/j.saa.2019.117175 |
[92] |
Jiang, C.; Huang, H.; Kang, X.; Yang, L.; Xi, Z.; Sun, H.; Pluth, M. D.; Yi, L. Chem. Soc. Rev. 2021, 50, 7436.
doi: 10.1039/D0CS01096K |
[93] |
Jing, X.; Yu, F.; Lin, W. Spectrochim. Acta, Part A 2020, 240, 118555.
doi: 10.1016/j.saa.2020.118555 |
[94] |
Gao, J.; Tao, Y.; Zhang, J.; Wang, N.; Ji, X.; He, J.; Si, Y.; Zhao, W. Chem.-Eur. J. 2019, 25, 11246.
|
[95] |
Huang, Y.; Ren, Q.; Li, S.; Feng, Y.; Zhang, W.; Fang, G.; Li, L.; Sun, C.; Wang, X.; Meng, X. Sens. Actuators, B 2019, 293, 247.
doi: 10.1016/j.snb.2019.04.120 |
[96] |
Tamima, U.; Song, C. W.; Santra, M.; Reo, Y. J.; Banna, H.; Islam, M. R.; Ahn, K. H. Sens. Actuators, B 2020, 322, 128588.
doi: 10.1016/j.snb.2020.128588 |
[97] |
Kosuge, Y. Exp. Ther. Med. 2020, 19, 1565.
|
[98] |
Bechtel, T. J.; Li, C.; Kisty, E. A.; Maurais, A. J.; Weerapana, E. ACS Chem. Biol. 2020, 15, 543.
doi: 10.1021/acschembio.9b01014 pmid: 31899610 |
[99] |
Carelli, S.; Ceriotti, A.; Cabibbo, A.; Fassina, G.; Ruvo, M.; Sitia, R. Science 1997, 277, 1681.
pmid: 9287224 |
[100] |
Ashraf, N. U.; Sheikh, T. A. Free Radical Res. 2015, 49, 1405.
doi: 10.3109/10715762.2015.1078461 |
[101] |
Ji, Y.; Wu, Z.; Dai, Z.; Sun, K.; Zhang, Q.; Wu, G. Amino Acids 2016, 48, 149.
doi: 10.1007/s00726-015-2071-5 |
[102] |
Singh, V. K.; Rahman, M. N.; Munro, K.; Uversky, V. N.; Smith, S. P.; Jia, Z. PLoS One 2012, 7, e34680.
doi: 10.1371/journal.pone.0034680 |
[103] |
Kabil, O.; Yadav, V.; Banerjee, R. J. Biol. Chem. 2016, 291, 16418.
doi: 10.1074/jbc.C116.742213 pmid: 27365395 |
[104] |
Liu, S.; Xin, D.; Wang, L.; Zhang, T.; Bai, X.; Li, T.; Xie, Y.; Xue, H.; Bo, S.; Liu, D.; Wang, Z. Redox Biol. 2017, 13, 528.
doi: 10.1016/j.redox.2017.06.007 |
[105] |
Ali, F.; H. A, A.; Taye, N.; Gonnade, R. G.; Chattopadhyay, S.; Das, A. Chem. Commun. 2015, 51, 16932.
doi: 10.1039/C5CC07450A |
[106] |
Meng, Q.; Jia, H.; Succar, P.; Zhao, L.; Zhang, R.; Duan, C.; Zhang, Z. Biosens. Bioelectron. 2015, 74, 461.
doi: 10.1016/j.bios.2015.06.077 |
[107] |
Dong, B.; Lu, Y.; Zhang, N.; Song, W.; Lin, W. Anal. Chem. 2019, 91, 5513.
doi: 10.1021/acs.analchem.9b01457 |
[108] |
Zhou, L.; Li, Y.; Zhou, A.; Zhang, G.; Cheng, Z.-Q.; Ge, Y.-X.; Liu, S.-K.; Azevedo, R. B.; Zhang, J.; Jiang, S.; Jiang, C.-S. J. Fluoresc. 2020, 30, 1357.
doi: 10.1007/s10895-020-02615-x |
[109] |
Lowe, M. Curr. Opin. Cell Biol. 2011, 23, 85.
doi: 10.1016/j.ceb.2010.10.004 |
[110] |
Potelle, S.; Klein, A.; Foulquier, F. J. Inherit. Metab. Dis. 2015, 38, 741.
doi: 10.1007/s10545-015-9851-7 pmid: 25967285 |
[111] |
Sasaki, K.; Yoshida, H. J. Biochem. 2015, 157, 185.
doi: 10.1093/jb/mvv010 pmid: 25657091 |
[112] |
Lange, P. S.; Chavez, J. C.; Pinto, J. T.; Coppola, G.; Sun, C.-W.; Townes, T. M.; Geschwind, D. H.; Ratan, R. R. J. Exp. Med. 2008, 205, 1227.
doi: 10.1084/jem.20071460 |
[113] |
Sbodio, J. I.; Snyder, S. H.; Paul, B. D. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 780.
doi: 10.1073/pnas.1717877115 |
[114] |
Paul, B. D. Antioxidants 2021, 10, 1468.
doi: 10.3390/antiox10091468 |
[115] |
Chen, J.; Liu, H.; Yang, L.; Jiang, J.; Bi, G.; Zhang, G.; Li, G.; Chen, X. ACS Med. Chem. Lett. 2019, 10, 954.
doi: 10.1021/acsmedchemlett.9b00118 |
[116] |
Zhang, X.; Liu, C.; Chen, Y.; Cai, X.; Sheng, W.; Zhu, H.; Jia, P.; Li, Z.; Huang, S.; Zhu, B. Chem. Commun. 2020, 56, 1807.
doi: 10.1039/C9CC08796F |
[117] |
Zhang, X.; Liu, C.; Cai, X.; Tian, B.; Zhu, H.; Chen, Y.; Sheng, W.; Jia, P.; Li, Z.; Yu, Y.; Huang, S.; Zhu, B. Sens. Actuators, B 2020, 310, 127820.
doi: 10.1016/j.snb.2020.127820 |
[118] |
Zhu, H.; Liu, C.; Rong, X.; Zhang, Y.; Su, M.; Wang, X.; Liu, M.; Zhang, X.; Sheng, W.; Zhu, B. Bioorg. Chem. 2022, 122, 105741.
doi: 10.1016/j.bioorg.2022.105741 |
[119] |
Ducharme, N. A.; Bickel, P. E. Endocrinology 2008, 149, 942.
doi: 10.1210/en.2007-1713 pmid: 18202123 |
[120] |
Olzmann, J. A.; Carvalho, P. Nat. Rev. Mol. Cell Biol. 2019, 20, 137.
doi: 10.1038/s41580-018-0085-z |
[121] |
Mashek, D. G.; Khan, S. A.; Sathyanarayan, A.; Ploeger, J. M.; Franklin, M. P. Hepatology 2015, 62, 964.
doi: 10.1002/hep.27839 |
[122] |
Dai, J.; Liang, K.; Zhao, S.; Jia, W.; Liu, Y.; Wu, H.; Lv, J.; Cao, C.; Chen, T.; Zhuang, S.; Hou, X.; Zhou, S.; Zhang, X.; Chen, X.-W.; Huang, Y.; Xiao, R.-P.; Wang, Y.-L.; Luo, T.; Xiao, J.; Wang, C. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E5896.
|
[123] |
Mok, W. J.; Hatanaka, Y.; Seoka, M.; Itoh, T.; Tsukamasa, Y.; Ando, M. Food Chem. 2014, 147, 340.
doi: 10.1016/j.foodchem.2013.09.157 pmid: 24206728 |
[124] |
Yue, F.; Oprescu, S. N.; Qiu, J.; Gu, L.; Zhang, L.; Chen, J.; Narayanan, N.; Deng, M.; Kuang, S. Cell Rep. 2022, 38, 110267.
doi: 10.1016/j.celrep.2021.110267 |
[125] |
Cheng, W.; Xue, X.; Zhang, F.; Zhang, B.; Li, T.; Peng, L.; Cho, D.-H.; Chen, H.; Fang, J.; Chen, X. Anal. Chim. Acta 2020, 1127, 20.
doi: S0003-2670(20)30642-5 pmid: 32800125 |
[126] |
Wang, Z.; Gui, C.; Zhao, E.; Wang, J.; Li, X.; Qin, A.; Zhao, Z.; Yu, Z.; Tang, B. Z. ACS Appl. Mater. Interfaces 2016, 8, 10193.
doi: 10.1021/acsami.6b01282 |
[1] | Yingzhen Zhang, Dandan Jiang, Juanhua Li, Jingjing Wang, Kunming Liu, Jinbiao Liu. Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 41-53. |
[2] | Weiqing Yang, Yanbing Ge, Yuanyuan Chen, Ping Liu, Haiyan Fu, Menglin Ma. Design and Synthesis of Fluorescent 1,8-Napthalimide Derivatives and Their Identification of Cysteine [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 180-194. |
[3] | Huanqing Li, Zhaohua Chen, Zujia Chen, Qiwen Qiu, Youcai Zhang, Sihong Chen, Zhaoyang Wang. Research Progress in Mercury Ion Fluorescence Probes Based on Organic Small Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3067-3077. |
[4] | Binghui Ding, Shaohui Han, Haiqing Xiong, Benhua Wang, Bojun Zuo, Xiangzhi Song. A Highly Selective Ratiometric Fluorescent Probe for the Detection of Hypochlorite in Acute Lung Injury [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2878-2884. |
[5] | Yifang Li, Yao Wang, Huawei Niu, Xiujin Chen, Zhaozhou Li, Yongguo Wang. Research Progress of Sulfur Dioxide Fluorescent Probe Targeting Mitochondria [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1952-1962. |
[6] | Tiantian Liu, Hongpeng Zhang, Xiaomeng Jiao, Yinjuan Bai. Research Progress of Multi-signal Fluorescent Probes for Simultaneous Detection of Biothiols [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2081-2095. |
[7] | Zhihua Chen, Yan Hu, Lili Ma, Ziyi Zhang, Chuanxiang Liu. Rational Design of ortho-Vinylhydropyridine-Assisted Amino-fluorophore as Hypochlorite Fluorescent Probe [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 718-724. |
[8] | Hongwei Tang, Chao Wang, Keli Zhong, Shuhua Hou, Lijun Tang, Yanjiang Bian. A Naked-Eye and Fluorescent Dual-Channel Probe for Rapid Detection of Hg2+ and Its Multiple Applications [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 712-717. |
[9] | Yanhui Ma, Yuqian Wu, Xiaoxu Wang, Gui Gao, Xin Zhou. Research Progress of Near-Infrared Fluorescent Probes Based on 1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9H)-acridone (DDAO) [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 94-111. |
[10] | Yaxin Yang, Lin Chen, Xiaoling Hu, Keli Zhong, Shidi Li, Xiaomei Yan, Jinglin Zhang, Lijun Tang. Synthesis of a Turn-On Fluorescent Probe for Hydrogen Sulfide and Its Application in Red Wine and Living Cells [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 308-312. |
[11] | Meng Liu, Yanru Huang, Xiaofei Sun, Lijun Tang. An “Aggregation-Induced Emission+Excited-State Intramolecular Proton Transfer” Mechanisms-Based Benzothiazole Derived Fluorescent Probe and Its ClO– Recognition [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 345-351. |
[12] | Yangyang Li, Xiaofei Sun, Xiaoling Hu, Yuanyuan Ren, Keli Zhong, Xiaomei Yan, Lijun Tang. Synthesis of Triphenylamine Derivative and Its Recognition for Hg2+ with “OFF-ON” Fluorescence Response Based on Aggregation-Induced Emission (AIE) Mechanism [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 320-325. |
[13] | Jidong Zhang, Wanlin Yan, Wenqiang Hu, Dian Guo, Dalong Zhang, Xiaoxin Quan, Xianpan Bu, Siyu Chen. Design and Synthesis of a Zn2+ Fluorescent Probe Based on Aggregation Induced Luminescence Properties [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 326-331. |
[14] | Changliu Wang, Yongli Zhao, Junfeng Zhao. Recent Advances in Chemical Protein Modification via Cysteine [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2774-2792. |
[15] | Yanqin Lai, Xue Chen, Fang Chen, Linchen Ni, Ting Wang, Ziping Zhu, Ju Man, Chunxiao Jiang, Zhenda Xie. A Lysosome-Targeted Far-Red to Near-Infrared Fluorescent Probe for Monitoring Viscosity Change During the Ferroptosis Process [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2850-2856. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||