Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (2): 411-425.DOI: 10.6023/cjoc202210016 Previous Articles Next Articles
Special Issue: 有机氟化学虚拟合辑
收稿日期:
2022-10-17
修回日期:
2022-11-03
发布日期:
2022-11-04
Shuyong Songa,b, Senmiao Xua()
Received:
2022-10-17
Revised:
2022-11-03
Published:
2022-11-04
Contact:
*E-mail: senmiaoxu@licp.cas.cn
Share
Shuyong Song, Senmiao Xu. Recent Progress in Selective C-F Bond Activation of Trifluoromethyl Alkenes[J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 411-425.
[1] |
O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
doi: 10.1039/b711844a pmid: 18197347 |
[2] |
Jaroschik, F. Chem. Eur. J. 2018, 24, 14572.
doi: 10.1002/chem.201801702 |
[3] |
(a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C |
(b) Dhara, M. G.; Banerjee, S. Prog. Polym. Sci. 2010, 35, 1022.
doi: 10.1016/j.progpolymsci.2010.04.003 |
|
(c) Wozniak, A. I.; Yegorov, A. S.; Ivanov, V. S.; Igumnov, S. M.; Tcarkova, K. V. J. Fluorine Chem. 2015, 180, 45.
doi: 10.1016/j.jfluchem.2015.08.021 |
|
[4] |
(a) Charpentier, J.; Fruh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
doi: 10.1021/cr500223h pmid: 25152082 |
(b) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
doi: 10.1021/cr5002386 pmid: 25152082 |
|
(c) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013, 52, 8214.
doi: 10.1002/anie.201206566 pmid: 25152082 |
|
[5] |
(a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
doi: 10.1021/cr800388c pmid: 22085400 |
(b) Chelucci, G. Chem. Rev. 2012, 112, 1344.
doi: 10.1021/cr200165q pmid: 22085400 |
|
[6] |
Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL, 2007, pp. 211-217.
|
[7] |
Uneyama, K. Organofluorine chemistry, John wiley & sons, 2008.
|
[8] |
(a) Xiao, T.; Li, L.; Zhou, L. J. Org. Chem. 2016, 81, 7908.
doi: 10.1021/acs.joc.6b01620 |
(b) Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. Angew. Chem. Int. Ed. 2017, 56, 15073.
doi: 10.1002/anie.201709487 |
|
(c) Wu, L. H.; Cheng, J. K.; Shen, L.; Shen, Z. L.; Loh, T. P. Adv. Synth. Catal. 2018, 360, 3894.
doi: 10.1002/adsc.201800740 |
|
[9] |
(a) Zhang, X. X.; Cao, S. Tetrahedron Lett. 2017, 58, 375.
doi: 10.1016/j.tetlet.2016.12.054 |
(b) Pan, Y.; Qiu, J.; Silverman, R. B. J. Med. Chem. 2003, 46, 5292.
doi: 10.1021/jm034162s |
|
[10] |
(a) Ichikawa, J. J. Fluorine Chem. 2000, 105, 257.
doi: 10.1016/S0022-1139(99)00268-7 |
(b) Shen, Q.; Huang, Y.-G.; Liu, C.; Xiao, J.-G.; Chen, Q.-Y.; Guo, Y. J. Fluorine Chem. 2015, 179, 14.
doi: 10.1016/j.jfluchem.2015.07.007 |
|
[11] |
Wang, Z.; Sun, Y.; Shen, L. Y.; Yang, W. C.; Meng, F.; Li, P. Org. Chem. Front. 2022, 9, 853.
doi: 10.1039/D1QO01512E |
[12] |
(a) Bégué, J. P.; Bonnet-Delpon, D.; Rock, M. H. Tetrahedron Lett. 1995, 36, 5003.
pmid: 31245895 |
(b) Funabiki, K.; Sawa, K.; Shibata, K.; Matsui, M. Synlett 2002, 1134.
pmid: 31245895 |
|
(c) Bégué, J. P.; Bonnet-Delpon, D.; Rock, M. H. J. Chem. Soc. Perkin Trans. 1 1996, 12, 1409.
pmid: 31245895 |
|
(d) Kendrick, D. A.; Kolb, M. J. Fluorine Chem. 1989, 45, 265.
doi: 10.1016/S0022-1139(00)84151-2 pmid: 31245895 |
|
(e) Coates, G.; Tan, H. Y.; Kalff, C.; White, A. J.; Crimmin, M. R. Angew. Chem. Int. Ed. 2019, 58, 12514.
doi: 10.1002/anie.201906825 pmid: 31245895 |
|
[13] |
Wang, X. L.; Wang, C. Y.; Bolm, C. Org. Lett. 2022, 24, 7461.
doi: 10.1021/acs.orglett.2c03046 |
[14] |
Xing, W. L.; Wang, J. X.; Fu, M. C.; Fu, Y. Chin. J. Chem. 2022, 40, 323.
doi: 10.1002/cjoc.202100709 |
[15] |
Fujita, T.; Ikeda, M.; Hattori, M.; Sakoda, K.; Ichikawa, J. Synthesis 2014, 46, 1493.
doi: 10.1055/s-0033-1340857 |
[16] |
Fuchibe, K.; Takahashi, M.; Ichikawa, J. Angew. Chem. Int. Ed. 2012, 51, 12059.
doi: 10.1002/anie.201206946 pmid: 23086757 |
[17] |
Yang, J. R.; Mao, A.; Yue, Z. T.; Zhu, W. X.; Luo, X. W.; Zhu, C. W.; Xiao, Y. J.; Zhang, J. L. Chem. Commun. 2015, 51, 8326.
doi: 10.1039/C5CC02073E |
[18] |
(a) Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, 2006.
|
(b) Smart, B. E. In Organofluorine Chemistry: Principles and Commercial Applications, Eds.: Banks, R. E.; Smart, B. E.; Tatlow, J. C., Plenum Press, New York, 1994, p. 57.
|
|
[19] |
Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Angew. Chem. Int. Ed. 2017, 56, 5890.
doi: 10.1002/anie.201701985 pmid: 28418200 |
[20] |
Zeng, H.; Zhu, C. L.; Jiang, H. L. Org. Lett. 2019, 21, 1130.
doi: 10.1021/acs.orglett.9b00074 pmid: 30680998 |
[21] |
(a) Zhang, L. J.; Zhang, W.; Liu, J.; Hu, J. B. J. Org. Chem. 2009, 74, 2850.
doi: 10.1021/jo802819p |
(b) Haufe, G.; Suzuki, S.; Yasui, H.; Terada, C.; Kitayama, T.; Shiro, M.; Shibata, N. Angew. Chem. Int. Ed. 2012, 51, 12275.
doi: 10.1002/anie.201207304 |
|
(c) Champagne, P. A.; Pomarole, J.; Thérien, M. È.; Benhassine, Y.; Beaulieu, S.; Legault, C. Y.; Paquin, J. F. Org. Lett. 2013, 15, 2210.
doi: 10.1021/ol400765a |
|
(d) Choi, C.; Nuhant, P.; Mousseau, J. J.; Yang, X.; Gerstenberger, B. S.; Williams, J. M.; Wright, S. W. Org. Lett. 2016, 18, 5748.
doi: 10.1021/acs.orglett.6b03024 |
|
[22] |
Zeng, H.; Cai, Y. Y.; Jiang, H. F.; Zhu, C. L. Org. Lett. 2021, 23, 66.
doi: 10.1021/acs.orglett.0c03708 pmid: 33321040 |
[23] |
Phillips, N. A.; Coates, G. J.; White, A. J.; Crimmin, M. R. Chem. Eur. J. 2020, 26, 5365.
doi: 10.1002/chem.202000636 |
[24] |
(a) Xie, L.-G.; Wang, Z.-X. Angew. Chem. Int. Ed. 2011, 50, 4901.
doi: 10.1002/anie.201100683 pmid: 26991022 |
(b) Maity, P.; Shacklady-McAtee, D. M.; Yap, G. P.; Sirianni, E. R.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 280.
doi: 10.1021/ja3089422 pmid: 26991022 |
|
(c) Moragas, T.; Gaydou, M.; Martin, R. Angew. Chem. Int. Ed. 2016, 55, 5053.
doi: 10.1002/anie.201600697 pmid: 26991022 |
|
(d) Wang, D. Y.; Yang, Z. K.; Wang, C.; Zhang, A.; Uchiyama, M. Angew. Chem. Int. Ed. 2018, 57, 3641.
doi: 10.1002/anie.201712618 pmid: 26991022 |
|
(e) Yi, Y. Q. Q.; Yang, W. C.; Zhai, D. D.; Zhang, X. Y.; Li, S.-Q.; Guan, B.-T. Chem. Commun. 2016, 52, 10894.
doi: 10.1039/C6CC04531F pmid: 26991022 |
|
[25] |
Tang, L. L.; Liu, Z. Y.; She, W. Z.; Feng, C. Chem. Sci. 2019, 10, 8701.
doi: 10.1039/C9SC01966A |
[26] |
Zhu, C.; Sun, M. M.; Chen, K.; Liu, H. D.; Feng, C. Angew. Chem. Int. Ed. 2021, 60, 20237.
doi: 10.1002/anie.202106531 |
[27] |
Yan, S. S.; Wu, D. S.; Ye, J. H.; Gong, L.; Zeng, X.; Ran, C. K.; Gui, Y. Y.; Li, J.; Yu, D. G. ACS Catal. 2019, 9, 6987.
doi: 10.1021/acscatal.9b02351 |
[28] |
Ichikawa, J.; Nadano, R.; Ito, N. Chem. Commun. 2006, 42, 4425.
|
[29] |
Miura, T.; Ito, Y.; Murakami, M. Chem. Lett. 2008, 37, 1006.
doi: 10.1246/cl.2008.1006 |
[30] |
Huang, Y.; Hayashi, T. J. Am. Chem. Soc. 2016, 138, 12340.
doi: 10.1021/jacs.6b07844 |
[31] |
Jang, Y. J.; Rose, D.; Mirabi, B.; Lautens, M. Angew. Chem. Int. Ed. 2018, 57, 16147.
doi: 10.1002/anie.201808509 |
[32] |
Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Angew. Chem. Int. Ed. 2014, 53, 7564.
doi: 10.1002/anie.201402695 pmid: 24839171 |
[33] |
Ichitsuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5, 5947.
doi: 10.1021/acscatal.5b01463 |
[34] |
Zhang, X. M.; Liu, Y. X.; Chen, G.; Pei, G.; Bi, S. W. Organometallics 2017, 36, 3739.
doi: 10.1021/acs.organomet.7b00514 |
[35] |
Zhu, C.; Liu, Z. Y.; Tang, L. N.; Zhang, H.; Zhang, Y. F.; Walsh, P.; Feng, C. Nat. Commun. 2020, 11, 4860.
doi: 10.1038/s41467-020-18658-4 |
[36] |
Qiu, J.; Wang, C. C.; Zhou, L.; Lou, Y. X.; Yang, K.; Song, Q. L. Org. Lett. 2022, 24, 2446.
doi: 10.1021/acs.orglett.2c00800 |
[37] |
Dai, W. P.; Lin, Y. Y.; Wan, Y.; Cao, S. Org. Chem. Front. 2018, 5, 55.
doi: 10.1039/C7QO00716G |
[38] |
Wang, M. Y.; Pu, X. H.; Zhao, Y. F.; Wang, P. P.; Li, Z. X.; Zhu, C. D.; Shi, Z. Z. J. Am. Chem. Soc. 2018, 140, 9061.
doi: 10.1021/jacs.8b04902 |
[39] |
Corberán, R.; Mszar, N. W.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2011, 50, 7079.
doi: 10.1002/anie.201102398 |
[40] |
Liu, Y.; Zhou, Y. H.; Zhao, Y. L.; Qu, J. P. Org. Lett. 2017, 19, 946.
doi: 10.1021/acs.orglett.7b00168 |
[41] |
Akiyama, S.; Nomura, S.; Kubota, K.; Ito, H. Org. Lett. 2020, 85, 4172
|
[42] |
Gao, P.; Yuan, C. C.; Zhao, Y.; Shi, Z. Z. Chem. 2018, 4, 2201.
doi: 10.1016/j.chempr.2018.07.003 |
[43] |
Kojima, R.; Akiyama, S.; Ito, H. Angew. Chem. Int. Ed. 2018, 57, 7196.
doi: 10.1002/anie.201803663 pmid: 29700909 |
[44] |
Paioti, P. H.; Del Pozo, J.; Mikus, M. S.; Lee, J.; Koh, M. J.; Romiti, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2019, 141, 19917.
doi: 10.1021/jacs.9b11382 pmid: 31809041 |
[45] |
Gao, P.; Wang, G. Q.; Xi, L. L.; Wang, M. Y.; Li, S. H.; Shi, Z. Z. Chin. J. Chem. 2019, 37, 1009.
doi: 10.1002/cjoc.201900310 |
[46] |
Fan, Z. W.; Ye, M. X.; Wang, Y. H.; Qiu, J.; Li, W. Y.; Ma, X. X.; Yang, K. Song, Q. L. ACS Cent. Sci. 2022, 8, 1134.
doi: 10.1021/acscentsci.2c00339 |
[47] |
Gao, P.; Gao,L. Z.; Xi, L. L.; Zhang, Z. D.; Li, S. H.; Shi, Z. Z. Org. Chem. Front. 2020, 7, 2618.
doi: 10.1039/D0QO00773K |
[48] |
Oyama, N.; Akiyama, S.; Kubota, K.; Imamoto, T.; Ito, H. Eur. J. Org. Chem. 2022, 31, e202200664.
|
[1] | Li Guan, Yanyan Zhou, Yongbao Mao, Kaisen Fu, Wenhui Guan, Yile Fu. Research Progress in the Synthesis of Polymethine Chain Modified Cyanine Dyes [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2682-2698. |
[2] | Peng Liu, Fuming Zhong, Lihao Liao, Weiqiang Tan, Xiaodan Zhao. Progress in the Construction of Spirocyclohexadienones via Alkyne-Involving Dearomatization [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4019-4035. |
[3] | Wenqi Liu, Zhenlu Shen, Senmiao Xu. Synthesis of 1,1-Diboron Alkanes via Diborylation of Unactivated Primary C(sp3)—H Bonds Enabled by AsPh3/Iridium Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1101-1110. |
[4] | Zhe Chang, Jiaxin Wang, Xi Lu, Yao Fu. Synthesis of gem-Difluoroalkenes through Nickel-Promoted Electrochemical Reductive Cross-Coupling [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 147-159. |
[5] | Xiaoliang Zou, Senmiao Xu. Recent Progress in Iridium-Catalyzed Remote Regioselective C—H Borylation of (Hetero)Arenes [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2610-2620. |
[6] | Yonghong Zhang, Chengzong Tang, Yonghong Liu, Chenjiang Liu. Research Progress of Aryltriazene as Aryl Precursor and Aryl-Azo Precursors in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2587-2600. |
[7] | Luhua Liu, Rongrong Du, Senmiao Xu. Ligand-Free Iridium-Catalyzed Borylation of Secondary Benzylic C—H Bonds [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1572-1581. |
[8] | Liang Liu, Wenbo Liu, Dong-Mei Cui, Ming Zeng. Progress in the Synthesis of Aroyl Compounds [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4289-4305. |
[9] | Linyu Jiao, Hua Yu, Zihui Ning, Zhuo Li. Research Progress in the Preparation of Aryl and Alkyl Mixed Phosphates [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4180-4191. |
[10] | Han Ren, Ruxiang Li, Zhijian Chen, Lili Li, Hao Wang. Modification Methods and Applications of Self-Assembly Peptides [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3983-3994. |
[11] | Yitong Liu, Xiyuan Zhang, Zhiwei Miao. Research Progress on the Synthetic Method of Five-Membered Spirooxindole Derivatives at C-3 Position [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3965-3982. |
[12] | Chen Kaihong, Li Hongru, He Liangnian. Advance and Prospective on CO2 Activation and Transformation Strategy [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2195-2207. |
[13] | Xu Xinming, Li Jiazhu, Wang Zuli. Recent Advances in Transition Metal-Free Sulfenylation of Indoles [J]. Chinese Journal of Organic Chemistry, 2020, 40(4): 886-898. |
[14] | Sheng Jie, Wu Na, Liu Xu, Liu Feng, Liu Shuai, Ding Weijie, Liu Chang, Cheng Xu. Electrochemical Allylic Hydrodefluorination Reaction Using Gaseous Ammonia as Hydrogen Source [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3873-3880. |
[15] | Ma Ben, Wang Ganggang, Zhou Hongyan, Yang Jingya. Alkali Salt-Catalyzed Aza-Michael Addition of 1,2,4-Triazole to α,β-Unsaturated Ketones and Imides [J]. Chinese Journal of Organic Chemistry, 2020, 40(1): 115-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||