Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (4): 1319-1326.DOI: 10.6023/cjoc202310013 Previous Articles Next Articles
ARTICLES
刘君君a, 卢涛涛a, 马平a, 赵庆阳a,*(), 邝福儿b,*()
收稿日期:
2023-10-16
修回日期:
2023-11-13
发布日期:
2023-11-23
基金资助:
Junjun Liua, Taotao Lua, Ping Maa, Qingyang Zhaoa(), Fuk Yee Kwongb()
Received:
2023-10-16
Revised:
2023-11-13
Published:
2023-11-23
Contact:
E-mail: Supported by:
Share
Junjun Liu, Taotao Lu, Ping Ma, Qingyang Zhao, Fuk Yee Kwong. Palladium-Catalyzed C(sp3)—Si Bonds Transformation for Construct-ing Trifluoropropyl (Hetero)arenes through C(sp3)—C(sp2) Cross-Coupling Reactions[J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1319-1326.
Entry | L | [Pd] | F– source | Solvent | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|---|
1c | PPh3 | Pd(OAc)2 | TBAF | THF | 100 | 36 |
2c | PCy3 | Pd(OAc)2 | TBAF | THF | 100 | 42 |
3c | XPhos | Pd(OAc)2 | TBAF | THF | 100 | 15 |
4 | dppm | Pd(OAc)2 | TBAF | THF | 100 | 49 |
5 | dppe | Pd(OAc)2 | TBAF | THF | 100 | 24 |
6 | dppp | Pd(OAc)2 | TBAF | THF | 100 | 42 |
7 | dppb | Pd(OAc)2 | TBAF | THF | 100 | 48 |
8 | dppP | Pd(OAc)2 | TBAF | THF | 100 | 48 |
9 | dpph | Pd(OAc)2 | TBAF | THF | 100 | 52 |
10 | dppB | Pd(OAc)2 | TBAF | THF | 100 | 17 |
11 | DPEPhos | Pd(OAc)2 | TBAF | THF | 100 | 35 |
12 | dppf | Pd(OAc)2 | TBAF | THF | 100 | 23 |
13 | dpph | PdCl2 | TBAF | THF | 100 | 45 |
14 | dpph | Pd2(dba)3 | TBAF | THF | 100 | <5 |
15 | dpph | [Pd(cinnamyl)Cl]2 | TBAF | THF | 100 | <5 |
16 | dpph | Pd(OTF)2 | TBAF | THF | 100 | 50 |
17 | dpph | Pd(OAc)2 | TBAF | Tol | 100 | 49 |
18 | dpph | Pd(OAc)2 | TBAF | Dioxane | 100 | 41 |
19 | dpph | Pd(OAc)2 | TBAF | MeCN | 100 | 18 |
20 | dpph | Pd(OAc)2 | TBAF | DMF | 100 | 35 |
21 | dpph | Pd(OAc)2 | CsF | THF | 100 | <5 |
22 | dpph | Pd(OAc)2 | RbF | THF | 100 | ND |
23 | dpph | Pd(OAc)2 | KF | THF | 100 | ND |
24 d | dpph | Pd(OAc)2 | TBAF | THF | 100 | 62 (57) |
25 e | dpph | Pd(OAc)2 | TBAF | THF | 100 | 46 |
26 d | dpph | Pd(OAc)2 | TBAF | THF | 90 | 57 |
27 d | dpph | Pd(OAc)2 | TBAF | THF | 110 | 62 |
28 d | dpph | Pd(OAc)2 | TBAF | THF | 120 | 53 |
Entry | L | [Pd] | F– source | Solvent | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|---|
1c | PPh3 | Pd(OAc)2 | TBAF | THF | 100 | 36 |
2c | PCy3 | Pd(OAc)2 | TBAF | THF | 100 | 42 |
3c | XPhos | Pd(OAc)2 | TBAF | THF | 100 | 15 |
4 | dppm | Pd(OAc)2 | TBAF | THF | 100 | 49 |
5 | dppe | Pd(OAc)2 | TBAF | THF | 100 | 24 |
6 | dppp | Pd(OAc)2 | TBAF | THF | 100 | 42 |
7 | dppb | Pd(OAc)2 | TBAF | THF | 100 | 48 |
8 | dppP | Pd(OAc)2 | TBAF | THF | 100 | 48 |
9 | dpph | Pd(OAc)2 | TBAF | THF | 100 | 52 |
10 | dppB | Pd(OAc)2 | TBAF | THF | 100 | 17 |
11 | DPEPhos | Pd(OAc)2 | TBAF | THF | 100 | 35 |
12 | dppf | Pd(OAc)2 | TBAF | THF | 100 | 23 |
13 | dpph | PdCl2 | TBAF | THF | 100 | 45 |
14 | dpph | Pd2(dba)3 | TBAF | THF | 100 | <5 |
15 | dpph | [Pd(cinnamyl)Cl]2 | TBAF | THF | 100 | <5 |
16 | dpph | Pd(OTF)2 | TBAF | THF | 100 | 50 |
17 | dpph | Pd(OAc)2 | TBAF | Tol | 100 | 49 |
18 | dpph | Pd(OAc)2 | TBAF | Dioxane | 100 | 41 |
19 | dpph | Pd(OAc)2 | TBAF | MeCN | 100 | 18 |
20 | dpph | Pd(OAc)2 | TBAF | DMF | 100 | 35 |
21 | dpph | Pd(OAc)2 | CsF | THF | 100 | <5 |
22 | dpph | Pd(OAc)2 | RbF | THF | 100 | ND |
23 | dpph | Pd(OAc)2 | KF | THF | 100 | ND |
24 d | dpph | Pd(OAc)2 | TBAF | THF | 100 | 62 (57) |
25 e | dpph | Pd(OAc)2 | TBAF | THF | 100 | 46 |
26 d | dpph | Pd(OAc)2 | TBAF | THF | 90 | 57 |
27 d | dpph | Pd(OAc)2 | TBAF | THF | 110 | 62 |
28 d | dpph | Pd(OAc)2 | TBAF | THF | 120 | 53 |
[1] |
(a) Meijere A. D.; Bräse S.; Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014.
pmid: 26268813 |
(b) Cherney A. H.; Kadunce N. T.; Reisman S. E. Chem. Rev. 2015, 115, 9587.
doi: 10.1021/acs.chemrev.5b00162 pmid: 26268813 |
|
[2] |
Denmark S. E.; Regens C. S. Acc. Chem. Res. 2008, 41, 1486.
doi: 10.1021/ar800037p |
[3] |
(a) Denmark S. E.; Sweis R. F. In Metal-Catalyzed Cross-Coup- ling Reactions and More, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, pp. 475-532.
|
(b) Sore H. F.; Galloway W. R. J. D.; Spring D. R. Chem. Soc. Rev. 2012, 41, 1845.
doi: 10.1039/C1CS15181A |
|
(c) Sivakumar S.; Aneeja T.; Anilkumar G. ARKIVOC 2023, 2022, 295.
doi: 10.24820/ark.5550190.p011.845 |
|
(d) Komiyama T.; Minami Y.; Hiyama T. ACS Catal. 2017, 7, 631.
doi: 10.1021/acscatal.6b02374 |
|
[4] |
Manolikakes G. In Comprehensive Organic Synthesis II, 2 ed., Elsevier, Amsterdam, 2014, pp. 392-464.
|
[5] |
Jana R.; Pathak T. P.; Sigman M. S. Chem. Rev. 2011, 111, 1417.
doi: 10.1021/cr100327p |
[6] |
Denmark S. E.; Baird J. D. Chem.-Eur. J. 2006, 12, 4954.
pmid: 16671045 |
[7] |
(a) Hatanaka Y.; Hiyama T. Tetrahedron Lett. 1988, 29, 97.
doi: 10.1016/0040-4039(88)80026-1 |
(b) Hatanaka Y.; Hiyama T. Tetrahedron Lett. 1990, 31, 2719.
|
|
(c) Hiyama T.; Hatanaka Y. Pure Appl. Chem. 1994, 66, 1471.
doi: 10.1351/pac199466071471 |
|
(d) Matsuhashi H.; Kuroboshi M.; Hatanaka Y.; Hiyama T. Tetrahedron Lett. 1994, 35, 6507.
doi: 10.1016/S0040-4039(00)78258-X |
|
(e) Hayao M.; Satoshi A.; Kazunori H.; Yasuo H.; Atsunori M.; Tamejiro H. Bull. Chem. Soc. Jpn. 1997, 70, 437.
doi: 10.1246/bcsj.70.437 |
|
(f) Schweizer S. A.; Bach T. Synlett 2010, 2010, 81.
doi: 10.1055/s-0029-1218528 |
|
[8] |
(a) Nakao Y.; Takeda M.; Matsumoto T.; Hiyama T. Angew. Chem., Int. Ed. 2010, 49, 4447.
doi: 10.1002/anie.v49:26 |
(b) Itami K.; Mineno M.; Kamei T.; Yoshida J.-I. Org. Lett. 2002, 4, 3635.
doi: 10.1021/ol026573t |
|
(c) Lin K.; Wiles R. J.; Kelly C. B.; Davies G. H. M.; Molander G. A. ACS Catal. 2017, 7, 5129.
doi: 10.1021/acscatal.7b01773 |
|
[9] |
Denmark S. E.; Sweis R. F. Chem. Pharm. Bull. 2002, 50, 1531.
doi: 10.1248/cpb.50.1531 |
[10] |
(a) Zhou Y.; Wang J.; Gu Z.; Wang S.; Zhu W.; Aceña J. L.; Soloshonok V. A.; Izawa K.; Liu H. Chem. Rev. 2016, 116, 422.
doi: 10.1021/acs.chemrev.5b00392 pmid: 26756377 |
(b) Meanwell N. A. J. Med. Chem. 2018, 61, 5822.
doi: 10.1021/acs.jmedchem.7b01788 pmid: 26756377 |
|
(c) Ogawa Y.; Tokunaga E.; Kobayashi O.; Hirai K.; Shibata N. iScience 2020, 23, 101467.
doi: 10.1016/j.isci.2020.101467 pmid: 26756377 |
|
(d) Inoue M.; Sumii Y.; Shibata N. ACS Omega 2020, 5, 10633.
doi: 10.1021/acsomega.0c00830 pmid: 26756377 |
|
(e) Rong G.; Wang C.; Chen L.; Yan Y.; Cheng Y. Sci. Adv. 2020, 6, aaz1774.
pmid: 26756377 |
|
[11] |
(a) Jia H.; Häring A. P.; Berger F.; Zhang L.; Ritter T. J. Am. Chem. Soc. 2021, 143, 7623.
doi: 10.1021/jacs.1c02606 |
(b) Qing F.-L.; Liu X.-Y.; Ma J.-A.; Shen Q.; Song Q.; Tang P. CCS Chem. 2022, 4, 2518.
doi: 10.31635/ccschem.022.202201935 |
|
(c) Chen D.; Yang W.; Yao Y.; Yang X.; Deng Y.; Yang D. Chin. J. Org. Chem. 2018, 38, 2571. (in Chinese)
doi: 10.6023/cjoc201803045 |
|
(陈董涵, 杨文, 姚永祺, 杨新, 邓颖颍, 杨定乔, 有机化学, 2018, 38, 2571.)
doi: 10.6023/cjoc201803045 |
|
(d) Chen D.; Jiang J.; Wan J.-P. Chin. J. Chem. 2022, 40, 2582.
doi: 10.1002/cjoc.v40.21 |
|
(e) Ma R.; Deng Z.; Wang K.; Huang D.; Hu Y.; Lü X. Chin. J. Org. Chem. 2022, 42, 353. (in Chinese)
|
|
(马然松, 邓周斌, 王克虎, 黄丹凤, 胡雨来, 闾肖波, 有机化学, 2022, 42, 353.)
doi: 10.6023/cjoc202108058 |
|
[12] |
Liang T.; Neumann C. N.; Ritter T. Angew. Chem. Int. Ed. 2013, 52, 8214.
doi: 10.1002/anie.v52.32 |
[13] |
(a) Prakash G. K. S.; Krishnan H. S.; Jog P. V.; Iyer A. P.; Olah G. A. Org. Lett. 2012, 14, 1146.
doi: 10.1021/ol300076y pmid: 27862770 |
(b) Egami H.; Sodeoka M. Angew. Chem., Int. Ed. 2014, 53, 8294.
doi: 10.1002/anie.v53.32 pmid: 27862770 |
|
(c) Choi S.; Kim Y. J.; Kim S. M.; Yang J. W.; Kim S. W.; Cho E. J. Nat. Commun. 2014, 5, 4881.
doi: 10.1038/ncomms5881 pmid: 27862770 |
|
(d) Yu X.; Cohen S. M. J. Am. Chem. Soc. 2016, 138, 12320.
doi: 10.1021/jacs.6b06859 pmid: 27862770 |
|
(e) Duan Y.; Lin J.-H.; Xiao J.-C.; Gu Y.-C. Org. Chem. Front. 2017, 4, 1917.
doi: 10.1039/C7QO00430C pmid: 27862770 |
|
(f) Straathof N. J. W.; Cramer S. E.; Hessel V.; Noël T. Angew. Chem., Int. Ed. 2016, 55, 15549.
doi: 10.1002/anie.201608297 pmid: 27862770 |
|
[14] |
(a) Tan X.; Liu Z.; Shen H.; Zhang P.; Zhang Z.; Li C. J. Am. Chem. Soc. 2017, 139, 12430.
doi: 10.1021/jacs.7b07944 pmid: 35786873 |
(b) Chen Y.; Ma G.; Gong H. Org. Lett. 2018, 20, 4677.
doi: 10.1021/acs.orglett.8b02005 pmid: 35786873 |
|
(c) Kautzky J. A.; Wang T.; Evans R. W.; MacMillan D. W. C. J. Am. Chem. Soc. 2018, 140, 6522.
doi: 10.1021/jacs.8b02650 pmid: 35786873 |
|
(d) Kornfilt D. J. P.; MacMillan D. W. C. J. Am. Chem. Soc. 2019, 141, 6853.
doi: 10.1021/jacs.9b03024 pmid: 35786873 |
|
(e) Zhao X.; MacMillan D. W. C. J. Am. Chem. Soc. 2020, 142, 19480.
doi: 10.1021/jacs.0c09977 pmid: 35786873 |
|
(f) Cao Y.; Ahmadi R.; Poor Heravi M. R.; Issakhov A.; Ebadi A. G.; Vessally E. RSC Adv. 2021, 11, 39593.
doi: 10.1039/D1RA05018D pmid: 35786873 |
|
(g) Intermaggio N. E.; Millet A.; Davis D. L.; MacMillan D. W. C. J. Am. Chem. Soc. 2022, 144, 11961.
doi: 10.1021/jacs.2c04807 pmid: 35786873 |
|
[15] |
(a) Chen Q.-Y.; Wu S.-W. J. Chem. Soc.,Chem. Commun. 1989, 705.
|
(b) Chen Q.-Y.; Duan J.-X. Tetrahedron Lett. 1993, 34, 4241.
doi: 10.1016/S0040-4039(00)60538-5 |
|
(c) Sevenard D. V.; Kirsch P.; Röschenthaler G.-V.; Movchun V. N.; Kolomeitsev A. A. Synlett 2001, 379.
|
|
(d) Tyrra W.; Naumann D.; Quadt S.; Buslei S.; Yagupolskii Y. L.; Kremlev M. M. J. Fluorine Chem. 2007, 128, 813.
doi: 10.1016/j.jfluchem.2007.02.017 |
|
[16] |
Xu J.; Xiao B.; Xie C.-Q.; Luo D.-F.; Liu L.; Fu Y. Angew. Chem., Int. Ed. 2012, 51, 12551.
doi: 10.1002/anie.v51.50 |
[17] |
Wang F.; Xu P.; Cong F.; Tang P. Chem. Sci. 2018, 9, 8836.
doi: 10.1039/C8SC03730B |
[18] |
(a) Fu W. C.; Zheng B.; Zhao Q.; Chan W. T. K.; Kwong F. Y. Org. Lett. 2017, 19, 4335.
doi: 10.1021/acs.orglett.7b02023 |
(b) Yang Q.; Choy P. Y.; Zhao Q.; Leung M. P.; Chan H. S.; So C. M.; Wong W.-T.; Kwong F. Y. J. Org. Chem. 2018, 83, 11369.
doi: 10.1021/acs.joc.8b01599 |
|
(c) Zhao Q.; Fu W. C.; Kwong F. Y. Angew. Chem. Int. Ed. 2018, 57, 3381.
doi: 10.1002/anie.v57.13 |
|
(d) Zhao Q.; Choy P. Y.; Li L.; Kwong F. Y. Tetrahedron Lett. 2021, 62, 152670.
doi: 10.1016/j.tetlet.2020.152670 |
|
(e) Wong S. M.; Choy P. Y.; Zhao Q.; Yuen O. Y.; Yeung C. C.; So C. M.; Kwong F. Y. Organometallics 2021, 40, 2265.
doi: 10.1021/acs.organomet.0c00816 |
|
(f) Zhao Q.; Yu L.; Zhang Y.-D.; Guo Y.-Q.; Chen M.; Ren Z.-H.; Guan Z.-H. Nat. Commun. 2023, 14, 2572.
doi: 10.1038/s41467-023-38067-7 |
|
[19] |
(a) Yuen O. Y.; So C. M.; Man H. W.; Kwong F. Y. Chem.-Eur. J. 2016, 22, 6471.
doi: 10.1002/chem.v22.19 |
(b) So C. M.; Lee H. W.; Lau C. P.; Kwong F. Y. Org. Lett. 2009, 11, 317.
doi: 10.1021/ol802493z |
|
[20] |
Prakash G. K. S.; Krishnamurti R.; Olah G. A. J. Am. Chem. Soc. 1989, 111, 393.
doi: 10.1021/ja00183a073 |
[21] |
Tse M. H.; Choy P. Y.; Kwong F. Y. Acc. Chem. Res. 2022, 55, 3688.
doi: 10.1021/acs.accounts.2c00587 |
[1] | Junyong Wang, Na Li, Jie Ke, Chuan He. Recent Advances in Electrochemical Silylation [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 927-939. |
[2] | Jingrui Wang, Yongkui Feng, Nengzhong Wang, Nianyu Huang, Hui Yao. Pd-Catalyzed Stereoselective Synthesis of Nitroalkyl β-C-Glycosides [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3216-3225. |
[3] | Yingke Feng, He Wang, Mengxing Cui, Ran Sun, Xin Wang, Yang Chen, Lei Li. Visible-Light-Induced Difluoroalkylated Cyclization of Novel Functionalized Aromatic Isocyanides [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2913-2925. |
[4] | Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742. |
[5] | Yu Zhao, Kai Zhang, Yubin Bai, Yantu Zhang, Shihui Shi. A Metal-Free Photocatalytic Hydrosilylation of Alkenes Using Bromide Salt as a Hydrogen Atom Transfer Reagent [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2837-2847. |
[6] | Yuchao Wang, Jinbiao Liu, Zhitao He. Palladium-Catalyzed Asymmetric Hydrofunctionalizations of Conjugated Dienes [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2614-2627. |
[7] | Jinxiao Zhao, Tonghui Wei, Sen Ke, Yi Li. Visible Light-Catalyzed Synthesis of Difluoroalkylated Polycyclic Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1102-1114. |
[8] | Biao Han, Weishuang Li, Shuhan Chen, Zelang Zhang, Xue Zhao, Yaoyao Zhang, Lei Zhu. Recent Advances in Copper-Catalyzed Silyl Addition of Unsaturated Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 555-572. |
[9] | Zhi Tu, Jinsheng Yu, Jian Zhou. Synthesis of (Bromodifluoromethyl)trimethylsilane and Its Applications in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3491-3507. |
[10] | Qiyang Li, Haiyan Zhang, Wenbo Liu. Research Progress in Transition-Metal-Free C—Si Bond Formation [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3470-3490. |
[11] | Jiayi Zhao, Yicong Ge, Chuan He. Construction of Silicon-Stereogenic Center via Catalytic Asymmetric Si—H/X—H Dehydrogenative Coupling [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3352-3366. |
[12] | Yan Zeng, Fei Ye. Research Progress on New Catalytic Reaction Systems for Asymmetric Synthesis of Silicon-Stereogenic Center Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3388-3413. |
[13] | Wei Xiong, Bin Shi, Xuan Jiang, Liangqiu Lu, Wenjing Xiao. Ligand-Switched Pd-Catalyzed Divergent Transformations of Vinyl Cyclic Carbamates and Isocyanates [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 265-273. |
[14] | Qi Sun, Zeying Sun, Ze Yu, Guangwei Wang. Nickel-Catalyzed Stereoselective Aryl-Difluoroalkylation of Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2515-2520. |
[15] | Xinling Li, Weidong Meng, Xiuhua Xu, Yan'gen Huang. Visible Light Induced Arylfluoroalkylation of Activated Alkenes [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1820-1830. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||