Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (4): 1276-1283.DOI: 10.6023/cjoc202308019 Previous Articles Next Articles
ARTICLES
麦尔哈巴•居来提a, 布鲁努尔•玉散a, 阿不都热合曼•乌斯曼a,b,*()
收稿日期:
2023-08-20
修回日期:
2023-11-16
发布日期:
2023-12-08
基金资助:
Julaiti Maierhabaa, Yusan Bulunuera, Wusiman Abudurehemana,b()
Received:
2023-08-20
Revised:
2023-11-16
Published:
2023-12-08
Contact:
E-mail: Supported by:
Share
Julaiti Maierhaba, Yusan Bulunuer, Wusiman Abudureheman. Catalyst- and Additive-Free Direct Synthesis of N-Sulfonyl Guanidines[J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1276-1283.
Entry | 1a∶2a | Solvent | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1c | 1∶2 | DCE | r.t. | Trace |
2c | 1∶2 | DCE | 80 | 65 |
3 | 1∶2 | DCE | 80 | 81 |
4 | 1∶2 | EtOAc | 80 | Trace |
5 | 1∶2 | Dioxane | 80 | Trace |
6 | 1∶2 | MeCN | 80 | 75 |
7 | 1∶2 | CHCl3 | 80 | 88 |
8 | 1∶2 | PhCl | 80 | 80 |
9 | 1∶2 | DMF | 80 | Trace |
10 | 1∶2 | DMSO | 80 | Trace |
11 | 1∶2 | Acetone | 80 | 30 |
12 | 1∶2 | i-PrOH | 80 | 78 |
13 | 1∶2 | DCM | 80 | 50 |
14 | 1∶2 | CHCl3 | 60 | 72 |
15 | 1∶1.5 | CHCl3 | 80 | 90 |
16 | 1∶1.2 | CHCl3 | 80 | 85 |
17d | 1∶1.2 | CHCl3 | 100 | 91 |
18 | 1∶1.1 | CHCl3 | 100 | 82 |
Entry | 1a∶2a | Solvent | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1c | 1∶2 | DCE | r.t. | Trace |
2c | 1∶2 | DCE | 80 | 65 |
3 | 1∶2 | DCE | 80 | 81 |
4 | 1∶2 | EtOAc | 80 | Trace |
5 | 1∶2 | Dioxane | 80 | Trace |
6 | 1∶2 | MeCN | 80 | 75 |
7 | 1∶2 | CHCl3 | 80 | 88 |
8 | 1∶2 | PhCl | 80 | 80 |
9 | 1∶2 | DMF | 80 | Trace |
10 | 1∶2 | DMSO | 80 | Trace |
11 | 1∶2 | Acetone | 80 | 30 |
12 | 1∶2 | i-PrOH | 80 | 78 |
13 | 1∶2 | DCM | 80 | 50 |
14 | 1∶2 | CHCl3 | 60 | 72 |
15 | 1∶1.5 | CHCl3 | 80 | 90 |
16 | 1∶1.2 | CHCl3 | 80 | 85 |
17d | 1∶1.2 | CHCl3 | 100 | 91 |
18 | 1∶1.1 | CHCl3 | 100 | 82 |
[1] |
Guthner T.; Mertschenk B.; Schulz B. Guanidine and Derivatives, In Ullmann's Encyclopedia of Industrial Chemistry, 17th ed., Wiley- VCH, Weinheim, 2006, p. 175.
|
[2] |
Muller G. W.; Walters D. E.; DuBois G. E. J. Med. Chem. 1992, 35, 740.
pmid: 1542101 |
[3] |
Buxbaum A.; Kratzer C.; Graninger W.; Georgopoulos A. J. Antimicrob. Chemother. 2006, 58, 193.
doi: 10.1093/jac/dkl206 |
[4] |
Maksic M.; Glasovac, Z. WO 2005100306, 2005.
|
[5] |
Taylor J. E.; Bull S. D.; Williams J. M. J. Chem. Soc. Rev. 2012, 41, 2109.
doi: 10.1039/c2cs15288f |
[6] |
Ishikawa T.; Kumamoto T. Synthesis 2006, 5, 737.
|
[7] |
Kumamoto T.; Ishikawa I.Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organoctalysts, John Wiley & Sons Ltd, Noida, India, 2009, Chapter 10, p. 295.
|
[8] |
Ishikawa T. Chem. Pharm. Bull. 2010, 58, 1555.
doi: 10.1248/cpb.58.1555 |
[9] |
Berlinck R. G. S. Nat. Prod. Rep. 1999, 16, 339.
doi: 10.1039/a900338j |
[10] |
Berlinck R. G, Trindade-Silva A. E.; Santos M. F. Nat. Prod. Rep. 2012, 29, 1382.
doi: 10.1039/c2np20071f pmid: 22991131 |
[11] |
Berlinck R. G.; Romminger S. Nat. Prod. Rep, 2016, 33, 456.
doi: 10.1039/c5np00108k pmid: 26689539 |
[12] |
Selig P. Guanidines as Reagents and Catalysts II, Vol. 51, Springer, Cham, Switzerland, 2017.
|
[13] |
Saczewski F.; Balewski Ł. Expert. Opin. Ther. Pat. 2009, 19, 1417.
doi: 10.1517/13543770903216675 |
[14] |
Bailey P. J.; Pace S. Coord. Chem. Rev. 2001, 214, 91.
doi: 10.1016/S0010-8545(00)00389-1 |
[15] |
Coles M. P. Dalton Trans 2006, 985.
|
[16] |
Gomes A. R.; Varela C. L.; Pires A. S.; Tavares-da-Silva E. J.; Roleira F. M. Bioorg. Chem. 2023, 138, 106600.
doi: 10.1016/j.bioorg.2023.106600 |
[17] |
Zhang W. X.; Xu L.; Xi Z. Chem. Commun. 2015, 51, 254.
doi: 10.1039/C4CC05291A |
[18] |
Katritzky A. R.; Rogovoy B. V. ARKIVOC 2005, 4, 49.
|
[19] |
Alonso-Moreno C.; Antinolo A.; Carrillo-Hermosilla F.; Otero A. Chem. Soc. Rev. 2014, 43, 3406.
doi: 10.1039/c4cs00013g pmid: 24626874 |
[20] |
Wang L.; Chi Y.; Zhang W.; Xi Z. Chin. J. Org. Chem. 2018, 38, 1341. (in Chinese)
doi: 10.6023/cjoc201801037 |
(王连军, 迟樾, 张文雄, 席振峰, 有机化学, 2018, 38, 1341.)
doi: 10.6023/cjoc201801037 |
|
[21] |
Gao Y.; Carta V.; Pink M.; Smith J. M. J. Am. Chem. Soc. 2021, 143, 5324.
doi: 10.1021/jacs.1c02068 |
[22] |
Karmakar H.; Anga S.; Panda T. K.; Chandrasekhar V. RSC Adv. 2022, 12, 4501.
doi: 10.1039/d2ra00242f pmid: 35425514 |
[23] |
Zhang Z.; Chang W. Chin. J. Org. Chem. 2021, 41, 1835. (in Chinese)
|
(张震, 畅温旭, 有机化学, 2021, 41, 1835.)
doi: 10.6023/cjoc202010020 |
|
[24] |
Yamamoto I.; Tokanou H.; Uemura H. A.; Gotoh H. J. Chem. Soc., Perkin Trans. 1 1977, 1241.
|
[25] |
Tan D.; Mottillo C.; Katsenis A. D.; Štrukil V.; Friščić T. Angew. Chem., Int. Ed. 2014, 53, 9321.
doi: 10.1002/anie.v53.35 |
[26] |
Zhang Z.; Huang B.; Qiao G.; Zhu L.; Xiao F.; Chen F.; Zhang Z. Angew. Chem., Int. Ed. 2017, 56, 4320.
doi: 10.1002/anie.201700539 pmid: 28319297 |
[27] |
Qiao G.; Zhang Z.; Huang B.; Zhu L.; Xiao F.; Zhang Z. Synthesis 2018, 50, 330.
doi: 10.1055/s-0036-1588576 |
[28] |
Bossio R.; Marcaccini S.; Pepino R. Tetrahedron Lett. 1995, 36, 2325.
doi: 10.1016/0040-4039(95)00246-9 |
[29] |
Gu Z. Y.; Liu Y.; Wang F.; Bao X.; Wang S. Y.; Ji S. J. ACS Catal. 2017, 7, 3893.
doi: 10.1021/acscatal.7b00798 |
[30] |
Fang Y.; Yang J. M.; Zhang R.; Wang S. Y.; Ji S. J. Org. Chem. Front. 2019, 6, 3383.
doi: 10.1039/c9qo00815b |
[31] |
Hazarika D.; Borah A. J.; Phukan P. Chem. Commun. 2019, 55, 1418.
doi: 10.1039/C8CC08564A |
[32] |
Mishra D.; Borah A. J.; Phukan P.; Hazarika D.; Phukan P. Chem. Commun. 2020, 56, 8408.
doi: 10.1039/D0CC02430A |
[33] |
Mishra D.; Rajkhowa S.; Phukan P. iScience 2023, 26, 107258.
doi: 10.1016/j.isci.2023.107258 |
[34] |
Rouzi A.; Hudabaierdi R.; Wusiman A. Tetrahedron 2018, 74, 2475.
doi: 10.1016/j.tet.2018.03.074 |
[35] |
Liu A. R.; Zhang L.; Li J.; Wusiman A. RSC Adv. 2021, 25, 15161.
|
[36] |
Holthausen M. H.; Colussi M.; Stephan D. W. Chem.-Eur. J. 2015, 21, 2193.
doi: 10.1002/chem.201405014 pmid: 25428578 |
[37] |
Egg H.; Gnauer U.; Hambrusch B. Arch. Pharm. 1987, 320, 673.
pmid: 3675162 |
[1] | Gangzhong Jiang, Jiaxing Lin, Xiaoguang Bao, Xiaobing Wan. Isoamyl Nitrite Activated Primary Sulfonamide to Sulfonyl Bromide and Sulfonyl Chloride [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 533-549. |
[2] | Jianghu Dong, Liangming Xuan, Chi Wang, Chenxi Zhao, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fen'er Chen. Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 111-136. |
[3] | Zhiyou Huang, Ping Yang, Bo He, Wenxia Ou, Siyu Yuan. Design and Synthesis of Morpholine Sulfonamide Compound and Its Inhibition on Soybean Seed Germination [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 309-315. |
[4] | Kai Lu, Haoqi Qu, Xi Chen, Hui Qiu, Jing Zheng, Mengtao Ma. Catalyst-Free and Solvent-Free Hydroboration of Alkynes and Alkenes with Catecholborane [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2197-2205. |
[5] | Yang Liu, Xiang Huang, Min Wang, Jian Liao. Enantioselective Copper-Catalyzed Mannich-Type Reaction of Cycic Ketimines and β,γ-Unsaturated N-Acylpyrazoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1499-1509. |
[6] | Yifang Chen, Xin Luo, Yu Wang, Zhifu Xing, Ju Peng, Jixiang Chen. Design, Synthesis and Antibacterial Activity of 1,3,4-Oxadiazole Sufones Containing Sulfonamide Structure [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 274-284. |
[7] | Zhi-You Huang, Ning Zhang, Han-Wen Zuo, Xu-Qi Zeng, Han Liu. Design, Synthesis and Seed Germination Inhibition Activity of Quinoline-6-sulfonamide Compounds [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2947-2953. |
[8] | Weikang Xia, Chuang Liu, Sheng Ye, Lei Wang, Ruiyuan Liu. Synthesis of A Sulfonamide-Substituted Benzothiadiazole-Based Fluorescent Dye and Study of Its Application for Long-Term Cancer Cell Tracking [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2535-2541. |
[9] | Haojie Ma, Fengyuan Zhou, Jinlei Liu, Bo Han, Hua Yang, Yuqi Zhang, Jijiang Wang. Construction of Substituted N-Phenylpyrazoles via a Catalyst- Free and Additive-Free Intermolecular Cyclization Process [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1843-1848. |
[10] | Xiaoting Wu, Feng Zhao, Xiaochen Ji, Huawen Huang. Visible Light-Assisted Photocatalyst-Free Tandem Sulfonylation/ Cyclization for the Synthesis of Oxindoles [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4323-4331. |
[11] | Haojie Ma, Xiaoqiang Zhou, Bo Han, Ran Li, Xueyan Hou, Xingyue Ji, Yuqi Zhang, Guosheng Huang, Jijiang Wang. A Catalyst-Free One-Pot Protocol for the Construction of Substituted Sulfonyl Pyrazoles [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3710-3716. |
[12] | Zhen Zhang, Wenxu Chang. Progress in Transition-Metal-Catalyzed Cyclization of Carbodiimides [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1835-1850. |
[13] | Qinghan Li, Ruiqiang Luo, Chuan Wu, Hongliu Xiao, Shaopeng Guo, Zhihao Zhang, Zheyao Huang, Lin Zhou. Research Progress of Cross-Coupling Reactions of Alkylaluminums with Electrophiles Reagents [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1489-1497. |
[14] | Yujuan Xiao, Yang Yang, Fan Zhang, Yadong Feng, Xiuling Cui. UV-Light-Initiated Construction of Indenones through Cyclization of Aryl Aldehydes or Aryl Ketones with Alkynes Avoiding Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4808-4814. |
[15] | Song Mengmeng, Zhang Zhiguo, Zheng Dan, Li Xiang, Liang Rui, Zhao Xu'na, Shi Lei, Zhang Guisheng. Hypervalent Organoiodine Promoted Dearylation Reaction of N-Aryl Sulfonamides [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2433-2441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||