Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (3): 989-996.DOI: 10.6023/cjoc202308018 Previous Articles Next Articles
ARTICLES
黄克金a, 蔡金博a, 王瑞革a, 张永红a, 王斌a, 夏昱a, 金伟伟b,*(), 李新勇c,*(), 刘晨江a,*()
收稿日期:
2023-08-20
修回日期:
2023-11-23
发布日期:
2024-04-02
作者简介:
共同第一作者
基金资助:
Kejin Huanga, Jinbo Caia, Ruige Wanga, Yonghong Zhanga, Bin Wanga, Yu Xiaa, Weiwei Jinb(), Xinyong Lic(), Chenjiang Liua()
Received:
2023-08-20
Revised:
2023-11-23
Published:
2024-04-02
Contact:
*E-mail: wwjin0722@cjlu.edu.cn; lixinyong@asymchem.com.cn; pxylcj@126.com
About author:
These authors contributed equally to this work.
Supported by:
Share
Kejin Huang, Jinbo Cai, Ruige Wang, Yonghong Zhang, Bin Wang, Yu Xia, Weiwei Jin, Xinyong Li, Chenjiang Liu. Electrochemical C(sp2)—H Bromination of Glycine Derivatives Enabled by Boron[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 989-996.
Entry | Electrolyte | Solvent | Electrode | Current/mA | Yieldb/% |
---|---|---|---|---|---|
1 | TBAB | DCM | C(+)|Ni(-) | 6 | 83 |
2 | NaBr | DCM | C(+)|Ni(-) | 6 | n.r. |
3 | Et4NBr | DCM | C(+)|Ni(-) | 6 | 74 |
4 | TBAB | CH3CN | C(+)|Ni(-) | 6 | 43 |
5 | TBAB | DMF | C(+)|Ni(-) | 6 | n.d. |
6 | TBAB | DMA | C(+)|Ni(-) | 6 | n.d. |
7c | TBAB | CH3CN | C(+)|Ni(-) | 6 | 55 |
8 | TBAB | DCM | C(+)|Ni(-) | 8 | 23 |
9 | TBAB | DCM | C(+)|Ni(-) | 4 | 48 |
10 | TBAB | DCM | C(+)|C(-) | 6 | 62 |
11 | TBAB | DCM | Ni(+)|Ni(-) | 6 | 33 |
12 | TBAB | DCM | C(+)|Ni(-) | 0 | n.r. |
13d | TBAB | DCM | C(+)|Ni(-) | 6 | 42 |
14e | TBAB | DCM | C(+)|Ni(-) | 6 | 43 |
15f | TBAB | DCM | C(+)|Ni(-) | 6 | 85 |
16g | TBAB | DCM | C(+)|Ni(-) | 58 | 75 |
Entry | Electrolyte | Solvent | Electrode | Current/mA | Yieldb/% |
---|---|---|---|---|---|
1 | TBAB | DCM | C(+)|Ni(-) | 6 | 83 |
2 | NaBr | DCM | C(+)|Ni(-) | 6 | n.r. |
3 | Et4NBr | DCM | C(+)|Ni(-) | 6 | 74 |
4 | TBAB | CH3CN | C(+)|Ni(-) | 6 | 43 |
5 | TBAB | DMF | C(+)|Ni(-) | 6 | n.d. |
6 | TBAB | DMA | C(+)|Ni(-) | 6 | n.d. |
7c | TBAB | CH3CN | C(+)|Ni(-) | 6 | 55 |
8 | TBAB | DCM | C(+)|Ni(-) | 8 | 23 |
9 | TBAB | DCM | C(+)|Ni(-) | 4 | 48 |
10 | TBAB | DCM | C(+)|C(-) | 6 | 62 |
11 | TBAB | DCM | Ni(+)|Ni(-) | 6 | 33 |
12 | TBAB | DCM | C(+)|Ni(-) | 0 | n.r. |
13d | TBAB | DCM | C(+)|Ni(-) | 6 | 42 |
14e | TBAB | DCM | C(+)|Ni(-) | 6 | 43 |
15f | TBAB | DCM | C(+)|Ni(-) | 6 | 85 |
16g | TBAB | DCM | C(+)|Ni(-) | 58 | 75 |
[1] |
Jiang C.; Sha X.; Ni C.; Qin W.; Zhu X.; Wang S.; Li X.; Lu H. J. Org. Chem. 2022, 87, 8744.
doi: 10.1021/acs.joc.2c00149 |
[2] |
Liu X.; Pu J.; Luo X.; Cui X.; Wu Z.; Huang G. Org. Chem. Front. 2018, 5, 361.
doi: 10.1039/C7QO00830A |
[3] |
Han J.; Konno H.; Sato T.; Soloshonok V. A.; Izawa K. Eur. J. Med. Chem. 2021, 220, 113448.
doi: 10.1016/j.ejmech.2021.113448 |
[4] |
Zhu Z.; Xiao L.; Xie Z.; Le Z. Chin. J. Org. Chem. 2019, 39, 2345. (in Chinese)
doi: 10.6023/cjoc201903006 |
( 祝志强, 肖利金, 谢宗波, 乐长高, 有机化学, 2019, 39, 2345.)
|
|
[5] |
Zhao L.; Li C. J. Angew. Chem., Int. Ed. 2008, 47, 7075.
doi: 10.1002/anie.v47:37 |
[6] |
Luo M. H.; Jiang Y. Y.; Xu K.; Liu Y. G.; Sun B. G.; Zeng C. C. Beilstein J. Org. Chem. 2018, 14, 499.
doi: 10.3762/bjoc.14.35 |
[7] |
Voskressensky L. G.; Golantsov N. E.; Maharramov A. M. Synthesis 2016, 48, 615.
doi: 10.1055/s-00000084 |
[8] |
Golantsov N. E.; Festa A. A.; Karchava A. V.; Yurovskaya M. A. Chem. Heterocycl. Compd. 2013, 49, 203.
doi: 10.1007/s10593-013-1238-9 |
[9] |
Miyaura N.; Suzuki A. Chem. Rev. 1995, 95, 2457.
doi: 10.1021/cr00039a007 |
[10] |
Heck R. F.; Nolley J. P. J. Org. Chem. 1972, 37, 2320.
doi: 10.1021/jo00979a024 |
[11] |
Stille J. K. Angew. Chem., Int. Ed. 1986, 25, 508.
doi: 10.1002/anie.v25:6 |
[12] |
Sonogashira K. J. Organomet. Chem. 2002, 653, 46.
doi: 10.1016/S0022-328X(02)01158-0 |
[13] |
Guram A. S.; Buchwald S. L. J. Am. Chem. Soc. 1994, 116, 7901.
doi: 10.1021/ja00096a059 |
[14] |
Paul F.; Patt J.; Hartwig J. F. J. Am. Chem. Soc. 1994, 116, 5969.
doi: 10.1021/ja00092a058 |
[15] |
Rogers D. A.; Brown R. G.; Brandeburg Z. C.; Ko E. Y.; Hopkins M. D.; LeBlanc G.; Lamar A. A. ACS Omega 2018, 3, 12868.
doi: 10.1021/acsomega.8b02320 pmid: 31458011 |
[16] |
Chrétien J. M.; Zammattio F.; Grognec E. L.; Paris M.; Cahingt B.; Montavon G.; Quintard J. P. J. Org. Chem. 2005, 70, 2870.
doi: 10.1021/jo0480141 |
[17] |
Das B.; Venkateswarlu K.; Majhi A.; Siddaiah V.; Reddy K. R. J. Mol. Catal. A: Chem. 2007, 267, 30.
doi: 10.1016/j.molcata.2006.11.002 |
[18] |
Veisi H.; Sedrpoushan A.; Mohammadi P.; Faraji A. R.; Sajjadifar S. RSC Adv. 2014, 4, 25898.
doi: 10.1039/C4RA03006K |
[19] |
Huang Z. J.; Li F. B.; Chen B. F.; Lu T.; Yuan Y.; Yuan G. Q. ChemSusChem 2013, 6, 1337.
doi: 10.1002/cssc.v6.8 |
[20] |
Gupta N.; Kad G. L.; Singh V.; Singh J. Synth. Commun. 2007, 37, 3421.
doi: 10.1080/00397910701519119 |
[21] |
Jiang D.; Wu F.; Cui H. Org. Biomol. Chem. 2023, 21, 1571.
doi: 10.1039/D3OB00019B |
[22] |
Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 21, 13230.
|
[23] |
Zhou Z.; Yuan Y.; Cao Y.; Qiao J.; Yao A.; Zhao J.; Zuo W.; Chen W.; Lei A. Chin. J. Chem. 2019, 37, 611.
doi: 10.1002/cjoc.v37.6 |
[24] |
Yang X.; Yang Q. L.; Wang X. Y.; Xu H. H.; Mei T. S.; Huang Y.; Fang P. J. Org. Chem. 2020, 85, 3497.
doi: 10.1021/acs.joc.9b03223 |
[25] |
Xie W.; Ning S.; Liu N.; Bai Y.; Wang S.; Wang S.; Shi L.; Che X.; Xiang J. Synlett 2019, 30, 1313.
doi: 10.1055/s-0037-1611545 |
[26] |
Wu Y.-W.; Xu S.-H.; Wang H.; Shao D.-X.; Qi Q.-Q.; Lu Y.; Ma L.; Zhou J.-H.; Hu W.; Gao W.; Chen J.-B. J. Org. Chem. 2021, 86, 16144.
doi: 10.1021/acs.joc.1c00923 |
[27] |
Chowdhury S.; Pandey S.; Gupta A.; Kumar A. Tetrahedron Lett. 2022, 120, 132902.
doi: 10.1016/j.tet.2022.132902 |
[28] |
Lv Y.-X.; Hou Z.-W.; Li P.-H.; Wang L. Org. Chem. Front. 2023, 10, 990.
doi: 10.1039/D2QO01425D |
[29] |
Liu X.; Wu Z.-Z.; Feng C.-L.; Liu W.-L.; Li M.-C.; Shen Z.-L. Eur. J. Org. Chem. 2022, 2022, e202200262.
|
[30] |
Lu H.-K.; Liu T.; Shi Z.-J.; Yan H.; Li Z.; Ye K.-Y. Eur. J. Org. Chem. 2023, 26, e202200963.
doi: 10.1002/ejoc.v26.7 |
[31] |
Wang R.; Wang J.; Zhang Y.; Wang B.; Xia Y.; Xue F.; Jin W.; Liu C. Adv. Synth. Catal. 2023, 365, 900.
doi: 10.1002/adsc.v365.6 |
[32] |
Dong X.; Wang R.; Jin W.; Liu C. Org. Lett. 2020, 22, 3062.
doi: 10.1021/acs.orglett.0c00814 |
[33] |
Wang R.; Dong X.; Zhang Y.; Wang B.; Xia Y.; Abdukader A.; Xue F.; Jin W.; Liu C. Chem.-Eur. J. 2021, 27, 14931.
doi: 10.1002/chem.v27.60 |
[34] |
Wang R.; Sun P.; Jin W.; Zhang Y.; Wang B.; Xia Y.; Xue F.; Abdukader A.; Liu C. Org. Chem. Front. 2022, 9, 2664.
doi: 10.1039/D2QO00221C |
[35] |
Wang R.; Zhang N.; Zhang Y.; Wang B.; Xia Y.; Sun K.; Jin W.; Li X.; Liu C. Green Chem. 2023, 25, 3925.
doi: 10.1039/D3GC00837A |
[36] |
Xie W.; Ning S.; Liu N.; Bai Y.; Wang S.; Wang S.; Shi L.; Che X.; Xiang J. Synlett 2019, 30, 1313.
doi: 10.1055/s-0037-1611545 |
[37] |
Kobayashi T.; Hosoya T.; Yoshida S. Bull. Chem. Soc. Jpn. 2021, 94, 1823.
doi: 10.1246/bcsj.20210149 |
[38] |
Ueda. T.; Konishi, H.; Manabe, K. Org. Lett. 2012, 14, 5370.
doi: 10.1021/ol302593z |
[39] |
Tian H.; Xu W.; Liu Y.; Wang Q. Org. Lett. 2020, 22, 5005.
doi: 10.1021/acs.orglett.0c01574 pmid: 32610920 |
[40] |
Sun B.; Yang J.; Zhang L.; Shi R.; Zhang X.; Xu T.; Zhuang X.; Zhu R.; Yu C.; Jin C. Asian J. Org. Chem. 2019, 8, 2058.
doi: 10.1002/ajoc.v8.11 |
[41] |
Jia X.; Liu X.; Shao Y.; Yuan Y.; Zhu Y.; Hou W.; Zhang X. Adv. Synth. Catal. 2017, 359, 4399.
doi: 10.1002/adsc.v359.24 |
[42] |
Xie J.; Huang Z.-Z. Angew. Chem., Int. Ed. 2010, 49, 10181.
doi: 10.1002/anie.v49.52 |
[43] |
Finger G. C.; Dickerson D. R.; Starr L. D.; Orlopp D. E. J. Med. Chem. 1965, 8, 405.
|
[44] |
Badami B. V.; Puranik G. S. Can. J. Chem. 1975, 53, 913.
doi: 10.1139/v75-127 |
[45] |
Zhang F.; Song Z.; Zhao F.; Niu L.CN 1446798, 2003.
|
[46] |
Wang J.; Yang S. Tetrahedron Lett. 2016, 57, 3444.
doi: 10.1016/j.tetlet.2016.06.076 |
[47] |
L. O.; Li, J.; Zheng J.;Huang, J.; Qi, C.; Wu, W.; Jiang, H. Angew. Chem., Int. Ed. 2017, 56, 15926.
doi: 10.1002/anie.v56.50 |
[48] |
Yang H.; Wei G.; Jiang Z. ACS Catal. 2019, 9, 9599.
doi: 10.1021/acscatal.9b03567 |
[1] | Chun Gao, Xin Liu, Minghui Wang, Shuxian Liu, Tingting Zhu, Yikang Zhang, Erjun Hao, Qiliang Yang. Advances in Asymmetric Electrochemical Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 673-727. |
[2] | Ruilin Gao, Lirong Wen, Weisi Guo. Recent Advances in Electrochemical-Promoted Unactivated C(sp3)—H Functionalization [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 892-902. |
[3] | Sifan Dong, Haolong Li, Yuan Qin, Shiming Fan, Shouxin Liu. Research Progress of Amino Acids as Transient Directing Groups in C—H Bond Activation Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2351-2367. |
[4] | Xiaojing Hu, Feixiang Guo, Runqing Zhu, Bingqi Zhou, Tao Zhang, Lizhen Fang. Synthesis of p-Alkoxy Phenol and Its Application after Dearomatization [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2239-2244. |
[5] | Cheng Yuan, Changduo Pan. Recent Advances in the N-Aryl C—H Functionalization Using 7-Azaindole as Intrinsic Directing Group [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 156-170. |
[6] | Siyu Mu, Hongxia Li, Zhilin Wu, Junmei Peng, Jinyang Chen, Weimin He. Electrocatalytic Three-Component Synthesis of 4-Bromopyrazoles from Acetylacetone, Hydrazine and Diethyl Bromomalonate [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4292-4299. |
[7] | Mingzhou Shang, Lanlan Zhang, Miaomiao Chen, Wangcheng Hu, Xinwei He, Hongjian Lu. Synthesis of Esterified/Fused Isocoumarins via Rh-Catalyzed C—H Activation/Transannulative Coupling/Annulation of Phthalic Anhydrides with Cyclic 2-Diazo-1,3-diketones and Methanol [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3816-3823. |
[8] | Wei Meng, Kun Xu, Bingbing Guo, Chengchu Zeng. Recent Advances in Minisci Reactions under Electrochemical Conditions [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2621-2635. |
[9] | Muxue He, Shiyan Cheng, Yongzhou Pan, Haitao Tang, Yingming Pan. Electrochemically Mediated S—N Bond Formation: Synthesis of Sulfenamides [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2354-2360. |
[10] | Shangfei Huo, Hong Chen, Weiwei Zuo. Selective Chlorination of Methane Photochemically Mediated by Ferric Chloride at Ambient Temperature [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1683-1690. |
[11] | Luhua Liu, Rongrong Du, Senmiao Xu. Ligand-Free Iridium-Catalyzed Borylation of Secondary Benzylic C—H Bonds [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1572-1581. |
[12] | Chao Hong, Xicheng Jiang, Shuling Yu, Zhanxiang Liu, Yuhong Zhang. Recent Progress on the Application of Sulfoxonium Ylides in C—H Activation [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 888-906. |
[13] | Weilin Wang, Weidong Chen, Junfei Luo, Pan Xie. Recent Advances in C—H Fluorination and Amination with N-Fluorobenzenesulfonimide [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 543-552. |
[14] | Shiyan Cheng, Chuhong Ou, Hongmin Lin, Junsong Jia, Haitao Tang, Yingming Pan, Guobao Huang, Xiujin Meng. Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic Oxidation [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4718-4724. |
[15] | Li Yang, Dong Shiyu, Qin Hongwei, Tang Bingyue, Gao Wentao, Chen Yu. A Facile Synthesis and M. tuberculosis Leucyl-tRNA Synthetase Inhi-bitory Activity of Novel 3-Arylvinylquinoxaline-2-carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2817-2826. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||