Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (12): 4718-4724.DOI: 10.6023/cjoc202110019 Previous Articles Next Articles
Special Issue: 有机电合成虚拟专辑; 绿色合成化学专辑; 热点论文虚拟合集
ARTICLES
程诗砚a, 欧楚鸿a, 林洪敏a, 贾均松a, 唐海涛a, 潘英明a,c, 黄国保b,*(), 蒙秀金a,*()
收稿日期:
2021-10-14
修回日期:
2021-12-08
发布日期:
2021-12-15
通讯作者:
黄国保, 蒙秀金
基金资助:
Shiyan Chenga, Chuhong Oua, Hongmin Lina, Junsong Jiaa, Haitao Tanga, Yingming Pana,c, Guobao Huangb(), Xiujin Menga()
Received:
2021-10-14
Revised:
2021-12-08
Published:
2021-12-15
Contact:
Guobao Huang, Xiujin Meng
Supported by:
Share
Shiyan Cheng, Chuhong Ou, Hongmin Lin, Junsong Jia, Haitao Tang, Yingming Pan, Guobao Huang, Xiujin Meng. Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic Oxidation[J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4718-4724.
Entry | Electrolyte | Solvent | Current/ mA | Electrode | Yieldb/ % |
---|---|---|---|---|---|
1 | LiClO4 | CH3CN | 5 | RVC(+)ǁPt(–) | 65 |
2 | LiClO4 | CH3CN | 10 | RVC(+)ǁPt(–) | 92 |
3 | LiClO4 | CH3CN | 15 | RVC(+)ǁPt(–) | 92 |
4 | NH4I | CH3CN | 10 | RVC(+)ǁPt(–) | 35 |
5 | TBAI | CH3CN | 10 | RVC(+)ǁPt(–) | 30 |
6 | TBAP | CH3CN | 10 | RVC(+)ǁPt(–) | NR |
7 | LiClO4 | DMSO | 10 | RVC(+)ǁPt(–) | 58 |
8 | LiClO4 | DMF | 10 | RVC(+)ǁPt(–) | Trace |
9 | LiClO4 | DCE | 10 | RVC(+)ǁPt(–) | 20 |
10 | LiClO4 | CH3CN | 10 | Pt(–)ǁRVC(+) | 25 |
11 | LiClO4 | CH3CN | 10 | RVC(+)ǁFe(–) | 30 |
12 | LiClO4 | CH3CN | 10 | RVC(+)ǁNi(–) | 38 |
13 | LiClO4 | CH3CN | 10 | RVC(+)ǁC felt(–) | 40 |
14 | LiClO4 | CH3CN | 10 | RVC(+)ǁRVC(–) | 45 |
15 | LiClO4 | CH3CN | 10 | C(+)ǁPt(–) | 85 |
16 | LiClO4 | CH3CN | 10 | Pt(+)ǁPt(–) | NR |
Entry | Electrolyte | Solvent | Current/ mA | Electrode | Yieldb/ % |
---|---|---|---|---|---|
1 | LiClO4 | CH3CN | 5 | RVC(+)ǁPt(–) | 65 |
2 | LiClO4 | CH3CN | 10 | RVC(+)ǁPt(–) | 92 |
3 | LiClO4 | CH3CN | 15 | RVC(+)ǁPt(–) | 92 |
4 | NH4I | CH3CN | 10 | RVC(+)ǁPt(–) | 35 |
5 | TBAI | CH3CN | 10 | RVC(+)ǁPt(–) | 30 |
6 | TBAP | CH3CN | 10 | RVC(+)ǁPt(–) | NR |
7 | LiClO4 | DMSO | 10 | RVC(+)ǁPt(–) | 58 |
8 | LiClO4 | DMF | 10 | RVC(+)ǁPt(–) | Trace |
9 | LiClO4 | DCE | 10 | RVC(+)ǁPt(–) | 20 |
10 | LiClO4 | CH3CN | 10 | Pt(–)ǁRVC(+) | 25 |
11 | LiClO4 | CH3CN | 10 | RVC(+)ǁFe(–) | 30 |
12 | LiClO4 | CH3CN | 10 | RVC(+)ǁNi(–) | 38 |
13 | LiClO4 | CH3CN | 10 | RVC(+)ǁC felt(–) | 40 |
14 | LiClO4 | CH3CN | 10 | RVC(+)ǁRVC(–) | 45 |
15 | LiClO4 | CH3CN | 10 | C(+)ǁPt(–) | 85 |
16 | LiClO4 | CH3CN | 10 | Pt(+)ǁPt(–) | NR |
[1] |
Hettikankanamalage, A. A.; Lassfolk, R.; Ekholm, F. S.; Leino, R.; Crich, D. Chem. Rev. 2020, 120, 7104.
doi: 10.1021/acs.chemrev.0c00243 pmid: 32627532 |
[2] |
Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations, John Wiley & Sons, Inc., New York, 1999.
|
[3] |
Otera, J.; Nishikido, J. J. Am. Chem. Soc. 2010, 132, 9221.
|
[4] |
Sable, V.; Shah, J.; Sharma, A.; Kapdi, A. R. Chem. Asian J. 2019, 14, 2639.
doi: 10.1002/asia.v14.15 |
[5] |
Endo, A.; Kuroda, M.; Tsujita, Y. J. Antibiot. 1976, 29, 1346.
pmid: 1010803 |
[6] |
(a) Liu, C.; Tang, S.; Zheng, L.; Liu, D.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 5662.
doi: 10.1002/anie.201201960 |
(b) Zhu, L.; Ren, X.; Yu, Y.; Ou, P.; Wang, Z.-X.; Huang, X. Org. Lett. 2020, 22, 2087.
doi: 10.1021/acs.orglett.0c00579 |
|
(c) Li, X.; Goh, T. W.; Li, L.; Xiao, C.; Guo, Z.; Zeng, X. C.; Huang, W. ACS Catal. 2016, 6, 3461.
doi: 10.1021/acscatal.6b00397 |
|
(d) Suzuki, K.; Yamaguchi, T.; Matsushita, K.; Iitsuka, C.; Miura, J.; Akaogi, T.; Ishida, H. ACS Catal. 2013, 3,1845.
doi: 10.1021/cs4004084 |
|
(e) Paul, B.; Khatun, R.; Sharma, S. K.; Adak, S.; Singh, G.; Das, D.; Siddiqui, N.; Bhandari, S.; Joshi, V.; Sasaki, T.; Bal, R. ACS Sustainable Chem. Eng. 2019, 7, 3982.
doi: 10.1021/acssuschemeng.8b05291 |
|
(f) Cheng, J.; Zhu, M.; Wang, C.; Li, J.; Jiang, X.; Wei, Y.; Tang, W.; Xue, D.; Xiao, J. Chem. Sci. 2016, 7, 4428.
doi: 10.1039/C6SC00145A |
|
[7] |
(a) Sarkar, S. D.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132, 1190.
doi: 10.1021/ja910540j pmid: 20055393 |
(b) Liu, B.; Yan, J.; Huang, R.; Wang, W.; Jin, Z.; Zanoni, G.; Zheng, P.; Yang, S.; Chi, Y. R. Org. Lett. 2018, 20, 3447.
doi: 10.1021/acs.orglett.8b01029 pmid: 20055393 |
|
(c) Wu, Z.; Jiang, D.; Wang, J. Org. Chem. Front. 2019, 6, 688.
doi: 10.1039/C8QO01420E pmid: 20055393 |
|
(d) Carmine, G. D.; Ragno, D.; Massi, A.; D'Agostino, C. Org. Lett. 2020, 22, 4927.
doi: 10.1021/acs.orglett.0c01188 pmid: 20055393 |
|
[8] |
(a) Gaspa, S.; Porcheddu, A.; Luca, L. D. Org. Lett. 2015, 17, 3666.
doi: 10.1021/acs.orglett.5b01579 |
(b) Chun, S.; Chung, Y. K. Org. Lett. 2017, 19: 3787.
doi: 10.1021/acs.orglett.7b01617 |
|
(c) Mühldorf, B.; Wolf, R. ChemCatChem 2017, 9, 920.
doi: 10.1002/cctc.v9.6 |
|
(d) Kozlov, K. S.; Romashov, L. V.; Ananikov, V. P. Green Chem. 2019, 21, 3464.
doi: 10.1039/C9GC00840C |
|
[9] |
(a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 pmid: 24500279 |
(b) Moeller, K. D. Chem. Rev. 2018, 118, 4817.
doi: 10.1021/acs.chemrev.7b00656 pmid: 24500279 |
|
(c) Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 5594.
doi: 10.1002/anie.201711060 pmid: 24500279 |
|
(d) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
doi: 10.1039/c3cs60464k pmid: 24500279 |
|
(e) Yoshida, J.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
doi: 10.1021/acs.chemrev.7b00475 pmid: 24500279 |
|
(f) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.
doi: 10.1016/j.chempr.2017.10.001 pmid: 24500279 |
|
(g) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
doi: 10.1021/acs.accounts.9b00512 pmid: 24500279 |
|
(h) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
doi: 10.1021/acs.accounts.9b00472 pmid: 24500279 |
|
(i) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
doi: 10.1021/acs.chemrev.7b00271 pmid: 24500279 |
|
(j) Zhou, Y.-J.; Zhao, Z.-H.; Zeng, L.; Li, L.; He, Y.-H.; Gu, L.-J. Chin. J. Org. Chem. 2021, 41, 1072. (in Chinese)
doi: 10.6023/cjoc202007049 pmid: 24500279 |
|
( 周娅琴, 赵志恒, 曾亮, 李鸣, 何永辉, 谷利军, 有机化学, 2021, 41, 1072.)
doi: 10.6023/cjoc202007049 pmid: 24500279 |
|
(k) Meng, Z.-Y.; Feng, C.-T.; Xu, K. Chin. J. Org. Chem. 2021, 41, 2535. (in Chinese)
doi: 10.6023/cjoc202012013 pmid: 24500279 |
|
( 蒙泽银, 冯承涛, 徐坤, 有机化学, 2021, 41, 2535.)
doi: 10.6023/cjoc202012013 pmid: 24500279 |
|
(l) Wu, M.; Yu, L.; Hou, H.-Q.; Chen, H.-Z.; Zhuang, Q.-L.; Zhou, S.-Y.; Lin, X.-Y. Chin. J. Org. Chem. 2021, 41, 2326. (in Chinese)
doi: 10.6023/cjoc202012028 pmid: 24500279 |
|
( 吴媚, 于玲, 侯慧青, 陈厚铮, 庄庆龙, 周孙英, 林小燕, 有机化学, 2021, 41, 2326.)
doi: 10.6023/cjoc202012028 pmid: 24500279 |
|
(m) Liu, W.-Q.; Yang, X.-L.; Tong, Z.-H.; Wu, L.-Z. Acta Chim. Sinica 2019, 77, 861. (in Chinese)
doi: 10.6023/A19030077 pmid: 24500279 |
|
( 刘文强, 杨修龙, 佟振合, 吴骊珠, 化学学报, 2019, 77, 861.)
doi: 10.6023/A19030077 pmid: 24500279 |
|
(n) Ma, Y.; Wu, S.; Jiang, S.; Xiao, F.; Deng, G.-J. Chin. J. Chem. 2021, 39, 3334.
doi: 10.1002/cjoc.v39.12 pmid: 24500279 |
|
(o) Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F.-E. Green Synth. Catal. 2021, 2, 19.
pmid: 24500279 |
|
(p) Chen, N.; Xu, H.-C. Green Synth. Catal. 2021, 2, 165.
pmid: 24500279 |
|
(q) Wu, Y.; Chen, J.-Y.; Liao, H.-R.; Shu, X.-R.; Duan, L.-L.; Yang, X.-F.; He, W.-M. Green Synth. Catal. 2021, 2, 233.
pmid: 24500279 |
|
(r) Chen, J.-Y.; Wu, H.-Y.; Gui, Q.-W.; Yan, S.-S.; Deng, J.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. J. Catal. 2021, 42, 1445.
doi: 10.1016/S1872-2067(20)63750-0 pmid: 24500279 |
|
[10] |
Finney, E. E.; Ogawa, K. A.; Boydston, A. J. J. Am. Chem. Soc. 2012, 134, 12374.
doi: 10.1021/ja304716r pmid: 22768916 |
[11] |
Green, R. A.; Pletcher, D.; Leach, S. G.; Brown, R. C. D. Org. Lett. 2015, 17, 3290.
doi: 10.1021/acs.orglett.5b01459 |
[12] |
(a) Zhong, P.-F.; Lin, H.-M.; Wang, L.-W.; Mo, Z.-Y.; Meng, X.-J.; Tang, H.-T.; Pan, Y.-M. Green Chem. 2020, 22, 6334.
doi: 10.1039/D0GC02125C |
(b) He, M.-X.; Mo, Z.-Y.; Wang, Z.-Q.; Cheng, S.-Y.; Xie, R.-R.; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2020, 22, 724.
doi: 10.1021/acs.orglett.9b04549 |
|
(c) Li, Q.-Y.; Cheng, S.-Y.; Tang, H.-T.; Pan, Y.-M. Green Chem. 2019, 21, 5517.
doi: 10.1039/C9GC03028J |
|
(d) Meng, X.-J.; Zhong, P.-F.; Wang, Y.-M.; Wang, H.-S.; Tang, H.-T.; Pan, Y.-M. Adv. Synth. Catal. 2020, 362, 506.
doi: 10.1002/adsc.v362.3 |
|
(e) Zhang, Y.-Z.; Mo, Z.-Y.; Wang, H.-S.; Wen, X.-A.; Tang, H.-T.; Pan, Y.-M. Green Chem. 2019, 21, 3807.
doi: 10.1039/C9GC01201J |
|
(f) Mo, Z.-Y.; Swaroop, T. R; Tong, W.; Zhang, Y.-Z.; Tang, H.-T.; Pan, Y.-M.; Sun, H.-B.; Chen, Z.-F. Green Chem. 2018, 20, 4428.
doi: 10.1039/C8GC02143K |
|
[13] |
Sawamura, T.; Takahashi, K.; Inagi, S.; Fuchigami, T. Angew. Chem., Int. Ed. 2012, 51, 4413.
doi: 10.1002/anie.201200438 |
[14] |
Xie, C.; Lin, L., Huang, L.; Wang, Z.; Jiang, Z.; Zhang, Z.; Han, B. Nat. Commun. 2021, 12, 4823.
doi: 10.1038/s41467-021-25118-0 |
[15] |
Teng, B.; Shi, J.; Yao, C. Green Chem. 2018, 20, 2465.
doi: 10.1039/C8GC00500A |
[16] |
Yu, D.; To, W.-P.; Tong, G. S. M.; Wu, L.-L.; Chan, K.-T.; Du, L.; Phillips, D. L.; Liu, Y.; Che, C.-M. Chem. Sci. 2020, 11, 6370.
doi: 10.1039/D0SC01340D |
[17] |
Wang, L.; Neumann, H.; Spannenberg, A.; Beller, M. Chem. Commun. 2017, 53, 7469.
doi: 10.1039/C7CC02828H |
[18] |
Yang, H. S.; Macha, L.; Ha, H.-J.; Yang, J. W. Org. Chem. Front. 2021, 8, 53.
doi: 10.1039/D0QO01135E |
[19] |
Khosravi, K.; Khalaji, K.; Naserifar, S. J. Chin. Chem. Soc. 2017, 64, 303.
doi: 10.1002/jccs.2017.64.issue-3 |
[20] |
Yu, C.; Özkaya, B.; Patureau, F. W. Chem.-Eur. J. 2021, 27, 3682.
doi: 10.1002/chem.v27.11 |
[21] |
Lawson, J. R.; Wilkins, L. C.; Melen, R. L. Chem.-Eur. J. 2017, 23, 10997.
doi: 10.1002/chem.201703109 pmid: 28686789 |
[22] |
Veatch, A. M.; Alexanian, E. J. Chem. Sci. 2020, 11, 7210.
doi: 10.1039/D0SC02178D |
[23] |
Bourne-Branchu, Y.; Gosmini, C.; Danoun, G. Chem.-Eur. J. 2017, 23, 10043.
doi: 10.1002/chem.201702608 pmid: 28594064 |
[24] |
Silva, A. T. M.; Pereira, V. V.; Takahashi, J. A.; Silva, R. R.; Duarte, L. P. Nat. Prod. Res. 2018, 32, 1714.
doi: 10.1080/14786419.2017.1399380 |
[25] |
Hoque, M. E.; Hassan, M. M. M.; Chattopadhyay, B. J. Am. Chem. Soc. 2021, 143, 5022.
doi: 10.1021/jacs.0c13415 |
[26] |
Rysak, V.; Dixit, R.; Trivelli, X.; Merle, N.; Agbossou-Niedercorn, F.; Kumar, V.; Michon, C. Cat. Sci. Technol. 2020, 10, 4586.
doi: 10.1039/D0CY00775G |
[27] |
Rammurthy, B.; Peraka, S.; Vasu, A.; Sai, G. K.; Rohini, Y. D.; Narender, N. Asian J. Org. Chem. 2021, 10, 594.
doi: 10.1002/ajoc.v10.3 |
[28] |
Velasco, N.; Suárez, A.; Martínez-Lara, F.; Fernández-Rodríguez, M. Á.; Sanz, R.; Suárez-Pantiga, S. J. Org. Chem. 2021, 86, 7078.
doi: 10.1021/acs.joc.1c00333 |
[1] | Yunzhe Zhong, Ying hen, Lei Yu, Hongwei Zhou. Electrochemical Mediated Esterification Reaction of Carboxylic Acids and Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2855-2863. |
[2] | Yijun Shi, Xinyue Sun, Han Cao, Fusheng Bie, Jie Ma, Zhe Liu, Xingshun Cong. Thioesterification of Esters with Primary Aliphatic Thiols at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2499-2505. |
[3] | Zehui Li, Haoyu Zou, Lincai Li, Yiling Zhao, Hongping Zhu. Synthesis and Propylene Oxide Carbonylation Hydroesterification Catalytic Property of N,O-Ligand Coordination Cobalt Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3907-3915. |
[4] | Jiayi Zhao, Yicong Ge, Chuan He. Construction of Silicon-Stereogenic Center via Catalytic Asymmetric Si—H/X—H Dehydrogenative Coupling [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3352-3366. |
[5] | Dongping Xu, Fei Huang, Lin Tang, Xinming Zhang, Wu Zhang. Visible Light-Induced Hydroxyalkylation of Heteroarenes with Aliphatic Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1493-1500. |
[6] | Binyang Jiang, Shi-Liang Shi. Recent Progress in Upgrading of Alcohol and Amine via Asymmetric Dehydrogenative Coupling [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3263-3279. |
[7] | Hongxia Li, Peng Chen, Zhilin Wu, Yuhan Lu, Junmei Peng, Jingyang Chen, Weimin He. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH4SCN [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3398-3404. |
[8] | Peng Wang, Da Yang, Huan Liu. Recent Advances on Carbonylation of 1,3-Dienes [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3379-3389. |
[9] | Wei Meng, Kun Xu, Bingbing Guo, Chengchu Zeng. Recent Advances in Minisci Reactions under Electrochemical Conditions [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2621-2635. |
[10] | Wanqun Tian, Mengyuan Li, Shuang Yang, Hao Zhang, Haiyang Liu, Xinyan Xiao. Copper Corrole as an Efficient Catalyst for Esterification of Allylic sp3-C—H Bonds with Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2875-2884. |
[11] | Muxue He, Shiyan Cheng, Yongzhou Pan, Haitao Tang, Yingming Pan. Electrochemically Mediated S—N Bond Formation: Synthesis of Sulfenamides [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2354-2360. |
[12] | Xiaoping Zhang, Guiyong Jin, Zhifei Chen, Qingfu Wang, Sensen Zhao, Zhiyong Wu, Shuai Wan, Gaolei Xi, Xu Zhao. Synthesis and Antioxidant Properties of Pyrazine-Thiazole Bi-heteroaryl Compounds [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2445-2453. |
[13] | Hao Wang, Ping Ying, Jingbo Yu, Weike Su. Alternative Strategies Enabling Cross-Dehydrogenative Coupling: Access to C—C Bonds [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1897-1924. |
[14] | Yu Jieqiang, Jia Jun, Wang Xingwang. Synthesis of a Type of Linear β,γ-Unsaturated α-Keto Tryptophol Ester Compounds [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2778-2787. |
[15] | Wang Hui, Wang Anwei, Xia Zhenzhen, Zhou Weiyou, Sun Zhonghua, Qian Junfeng, He Mingyang. Nickel(Ⅱ)-Catalyzed Aerobic Cross-Dehydrogenative Coupling for the Synthesis of N-Aryl Tetrahydroisoquinolines [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2099-2107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||