Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (7): 2341-2349.DOI: 10.6023/cjoc202401012 Previous Articles Next Articles
ARTICLES
徐童a, 张宁a, 张永红a, 王斌a, 夏昱a, 金伟伟b,*(), 金聘入c,*(), 刘晨江a,*()
收稿日期:
2024-01-12
修回日期:
2024-03-07
发布日期:
2024-03-28
基金资助:
Tong Xua, Ning Zhanga, Yonghong Zhanga, Bin Wanga, Yu Xiaa, Weiwei Jinb(), Pinru Jinc(), Chenjiang Liua()
Received:
2024-01-12
Revised:
2024-03-07
Published:
2024-03-28
Contact:
E-mail: Supported by:
Share
Tong Xu, Ning Zhang, Yonghong Zhang, Bin Wang, Yu Xia, Weiwei Jin, Pinru Jin, Chenjiang Liu. Copper-Based Solid Wastes Promoted Cross-Coupling Reactions of Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, 2024, 44(7): 2341-2349.
Entry | Pd catalyst | Solid waste/mg | Base | Solvent | 1a∶2a | T/℃ | Atmosphere | Yieldb/% |
---|---|---|---|---|---|---|---|---|
1 | Pd(OAc)2 | 200 | Et3N | DMSO | 1∶2 | 60 | N2 | 66 |
2 | PdCl2 | 200 | Et3N | DMSO | 1∶2 | 60 | N2 | 76 |
3 | Pd(PPh3)4 | 200 | Et3N | DMSO | 1∶2 | 60 | N2 | 93 |
4 | Pd(PPh3)4 | 200 | Et3N | H2O | 1∶2 | 60 | N2 | 32 |
5 | Pd(PPh3)4 | 200 | Et3N | EtOH | 1∶2 | 60 | N2 | 39 |
6 | Pd(PPh3)4 | 200 | Et3N | EG | 1∶2 | 60 | N2 | 60 |
7 | Pd(PPh3)4 | 200 | Et3N | PEG-400 | 1∶2 | 60 | N2 | 64 |
8 | Pd(PPh3)4 | 200 | Et3N | PEG-400 | 2∶1 | 60 | N2 | 90 |
9 | Pd(PPh3)4 | 200 | Et3N | PEG-400 | 2∶1 | 30 | N2 | 15 |
10 | Pd(PPh3)4 | 200 | Et3N | PEG-400 | 2∶1 | 60 | Air | 96 |
11 | — | 200 | Et3N | PEG-400 | 2∶1 | 60 | Air | N.R. |
12 | Pd(PPh3)4 | 0 | Et3N | PEG-400 | 2∶1 | 60 | Air | 60 |
13 | Pd(PPh3)4 | 200 | — | PEG-400 | 2∶1 | 60 | Air | 16 |
Entry | Pd catalyst | Solid waste/mg | Base | Solvent | 1a∶2a | T/℃ | Atmosphere | Yieldb/% |
---|---|---|---|---|---|---|---|---|
1 | Pd(OAc)2 | 200 | Et3N | DMSO | 1∶2 | 60 | N2 | 66 |
2 | PdCl2 | 200 | Et3N | DMSO | 1∶2 | 60 | N2 | 76 |
3 | Pd(PPh3)4 | 200 | Et3N | DMSO | 1∶2 | 60 | N2 | 93 |
4 | Pd(PPh3)4 | 200 | Et3N | H2O | 1∶2 | 60 | N2 | 32 |
5 | Pd(PPh3)4 | 200 | Et3N | EtOH | 1∶2 | 60 | N2 | 39 |
6 | Pd(PPh3)4 | 200 | Et3N | EG | 1∶2 | 60 | N2 | 60 |
7 | Pd(PPh3)4 | 200 | Et3N | PEG-400 | 1∶2 | 60 | N2 | 64 |
8 | Pd(PPh3)4 | 200 | Et3N | PEG-400 | 2∶1 | 60 | N2 | 90 |
9 | Pd(PPh3)4 | 200 | Et3N | PEG-400 | 2∶1 | 30 | N2 | 15 |
10 | Pd(PPh3)4 | 200 | Et3N | PEG-400 | 2∶1 | 60 | Air | 96 |
11 | — | 200 | Et3N | PEG-400 | 2∶1 | 60 | Air | N.R. |
12 | Pd(PPh3)4 | 0 | Et3N | PEG-400 | 2∶1 | 60 | Air | 60 |
13 | Pd(PPh3)4 | 200 | — | PEG-400 | 2∶1 | 60 | Air | 16 |
Entry | Variation from the standard conditions | Yieldb/% |
---|---|---|
1 | None | 98 |
2 | DEEDA instead of TMEDA | N.R. |
3 | DMEDA instead of TMEDA | N.R. |
4 | 20 mol% Et3N instead of TMEDA | 40 |
5 | 40 mol% Et3N instead of TMEDA | Trace |
6 | EtOH instead of CH3CN | 69 |
7 | PEG-400 instead of CH3CN | 57 |
8 | Without solid Waste | Trace |
9 | Without TMEDA | Trace |
Entry | Variation from the standard conditions | Yieldb/% |
---|---|---|
1 | None | 98 |
2 | DEEDA instead of TMEDA | N.R. |
3 | DMEDA instead of TMEDA | N.R. |
4 | 20 mol% Et3N instead of TMEDA | 40 |
5 | 40 mol% Et3N instead of TMEDA | Trace |
6 | EtOH instead of CH3CN | 69 |
7 | PEG-400 instead of CH3CN | 57 |
8 | Without solid Waste | Trace |
9 | Without TMEDA | Trace |
[1] |
(a) Chinchilla, R.; Carmen Najera, C. Chem. Rev. 2014, 114, 1783.
doi: 10.1021/cr400133p pmid: 23789922 |
(b) Stang, P. J.; Diederich, F. Modern Acetylene Chemistry, VCH, Weinheim, 1995.
pmid: 23789922 |
|
(c) Diederich, F.; Stang, P. J. Acetylene Chemistry, Ed.: Tykwinski, R. R., Wiley-VCH, Weinheim, 2005.
pmid: 23789922 |
|
(d) Feng, J.; Zhang, F; Shu, C.-Y.; Zhu, G.-G. Chin. J. Chem. 2022, 40, 1667.
pmid: 23789922 |
|
(e) Hao, T.-G.; Shi, M.; Wei, Y. Chin. J. Chem. 2023, 41, 301.
pmid: 23789922 |
|
(f) Batchu, V. R.; Subramanian, V.; Parasuraman, K.; Swamy, N. K.; Kumar, S.; Pal, M. Tetrahedron 2005, 61, 9869.
pmid: 23789922 |
|
[2] |
(a) Armstrong, K. M.; Lalic, G. J. Am. Chem. Soc. 2019, 141, 6173.
doi: 10.1021/jacs.9b02372 pmid: 30942593 |
(b) Hamasaka, G.; Roy, D.; Tazawa, A.; Uozumi, Y. ACS Catal. 2019, 9, 11640.
doi: 10.1021/acscatal.9b04593 pmid: 30942593 |
|
(c) Liu, L.; Dan Zhou, D.; Liu, M.; Zhou, Y.-B.; Chen, T.-Q. Org. Lett. 2018, 20, 2741.
pmid: 30942593 |
|
(d) Tian, Z.-Y.; Wang, S.-M.; Jia, S.-J.; Song, H.-X.; Zhang, C.-P. Org. Lett. 2017, 19, 5454.
pmid: 30942593 |
|
(e) Liu, B.-Q.; Yan, Z.-F.; Quan, Z.-J. Chin. J. Org. Chem. 2018, 38, 3032. (in Chinese)
pmid: 30942593 |
|
(刘伯渠, 燕中飞, 权正军, 有机化学, 2018, 38, 3032.)
doi: 10.6023/cjoc201803025 pmid: 30942593 |
|
[3] |
(a) Ma, N.; Zeng, X.-H. Chin. J. Org. Chem. 2018, 38, 1556. (in Chinese)
pmid: 29450996 |
(马楠, 曾祥华, 有机化学, 2018, 38, 1556.)
doi: 10.6023/cjoc201712038 pmid: 29450996 |
|
(b) Li, X.-W.; Liu, X.-H.; Chen, H.-J.; Wu, W.-Q.; Qi, C.-F.; Jiang, H.-F. Angew. Chem., Int. Ed. 2014, 53, 14485.
pmid: 29450996 |
|
(c) Sakamoto, R.; Kato, T.; Sakurai, S.; Maruoka, K. Org. Lett. 2018, 20, 1400.
doi: 10.1021/acs.orglett.8b00173 pmid: 29450996 |
|
(d) Feng, L.-L.; Hu, T.-J.; Zhang, S.-S.; Xiong, H.-Y.; Zhang, G.-W. Org. Lett. 2019, 21, 9487.
pmid: 29450996 |
|
(e) Lv, Y.-H.; Pu, W.-Y.; Shi, L.-H. Org. Lett. 2019, 21, 6034.
pmid: 29450996 |
|
(f) Biswas, S.; Mullick, K.; Chen, S.-Y.; Kriz, D. A.; Shakil, M.; Kuo, C.-H.; Angeles-Boza, A. M.; Rossi, A. R.; Suib, S. L. ACS Catal. 2016, 6, 5069.
pmid: 29450996 |
|
[4] |
(a) Zhang, G.; Shao, X.-B.; Li, Q.-H.; Yang, X.-J. Chin. J. Org. Chem. 2018, 38, 1538. (in Chinese)
|
(张刚, 杓学蓓, 李清寒, 杨学军, 有机化学, 2018, 38, 1538.)
doi: 10.6023/cjoc201802019 |
|
(b) Chen, H.; Yao, L.-C.; Guo, L.; Liu, Y. A.; Tian, B.-X.; Liao, X.-B. Cell Rep. Phys. Sci. 2023, 4, 101573.
|
|
(c) Li, Y.-Q.; Li, F.; Shi, S.-L. Chin. J. Chem. 2020, 38, 1035.
|
|
[5] |
Islam, K. M. N. Renewable Sustainable Energy Rev. 2018, 81, 2472.
|
[6] |
Martins, M. A. D. B.; Crispim, A.; Ferreira, M. L.; Dos Santos, I. F.; Melo, M. D. L. N.; Barros, R. M.; Filho, G. L. T. Cleaner Waste Systems 2023, 4, 100070
|
[7] |
Ding, Y.; Zhao, J.; Liu, J.; Zhou, J.; Cheng, L.; Zhao, J.; Shao, Z.; Iris, Ç.; Pan, B.; Li, X.; Hu, Z. J. Clean. Prod. 2021, 293, 126144.
|
[8] |
(a) Yu, H.-X.; Zahidi, I.; Liang, D.-F. J. Mater. Res. Technol. 2023, 23, 5733.
|
(b) Arenas, C.; Ríos, D. J.; Cifuentes, H.; Vilches, F. L.; Leiva, C. Eur. J. Environ. Civ. Eng. 2022, 9, 3805.
|
|
(c) Zhang, F.; Yu, W.; Liu, W.-Y.; Xu, Z.-Y. Front. Energy Res. 2020, 8, 50.
|
|
(d) Liu, B.-C.; Han, B.-R.; Liang, X.-Q.; Liu, Y.-F. Int. J. Hydrogen Energy 2024, 52, 1445.
|
|
[9] |
(a) Dewan, A.; Sarmah, M.; Bora, U.; Thakur, A. J. Tetrahedron Lett. 2016, 57, 3760.
|
(b) Dewan, A.; Sarmah, M.; Bora, U.; Thakur, A. J. Appl. Organomet. Chem. 2017, 31, e3646.
|
|
(c) Dewan, A.; armah, M.; Thakur, A. J.; Bharali, P.; Bora, U. ACS Omega 2018, 3, 5327.
|
|
(d) Boruah, P.-R.; Ali, A.-A.; Saikia, B.; Sarma, D. Green Chem. 2015, 17, 1442.
|
|
[10] |
(a) Isfahani, A. L.; Mohammadpoor-Baltork, I.; Mirkhani, V.; hosropour, A. R.; Moghadam, M.; Tangestaninejad, S. Eur. J. Org. Chem. 2014, 5603.
|
(b) Thathagar, M. B.; Beckers, J.; Rothenberg, G. Green Chem. 2004, 6, 215.
|
|
(c) Zhang, C.-T.; Peng, L.-J.; Song, B.-H.; Li, Z.-W.; Cao, X.-Q. Inorg. Chem. Commun. 2023, 158, 111471.
|
|
(d) Moghaddam, F. M.; Tavakoli, G.; Rezvani, H. R. Catal. Commun. 2015, 60, 82.
|
|
(e) Mohammadi, P.; Heravil, M. M.; Mohammadi, L.; Saljooqi, A. Sci. Rep. 2023, 13, 17375.
|
|
[11] |
(a) Tang, S.-Y.; Li, L.-J.; Ren, X.-H.; Li, J.; Yang, G.-Y.; Li, H.; Yuan, B.-X. Green Chem. 2019, 21, 2899.
|
(b) Su, L.-B.; Dong, J.-Y.; Liu, L.; Sun, M.-L.; Qiu, R.-H.; Zhou, Y.-B.; Yin, S.-F. J. Am. Chem. Soc. 2016, 138, 12348.
|
|
(c) Kusuda, A.; Xu, X.-X.; Wang, X.; Tokunaga, E.; Shibata, N. Green Chem. 2011, 13, 843.
|
|
(d) Zhang, L.-Z.; Wei, C.-B.; Wu, J.-W.; Liu, D.; Yao, Y.-C.; Chen, Z.; Liu, J.-X.; Yao, C.-J.; Li, D.-H.; Yang, R.-J.; Xia, Z.-H. Chem. Sci. 2022, 13, 7475.
|
|
[12] |
(a) Sun, Y.-J.; Wang, R.; Liu, T.-X.; Jin, W.-W.; Wang, B.; Zhang, Y.-H.; Xia, Y.; Liu, C.-J. Eur. J. Org. Chem. 2021, 2470.
|
(b) Sun, Y.-J.; Jin, W.-W.; Liu, C.-J. Molecules 2019, 24, 3838.
|
|
[13] |
Denis, P.; Andy, W.; John, H.; Sneddon, H.; C. Robert, M.; Sarah, A. S.; Peter J. D. Green Chem. 2016, 18, 288.
|
[14] |
Zhao, C.-Q.; Chen, Y.-G.; Qiu, H.; Wei, L.; Fang, P.; Mei, T.-S. Org. Lett. 2019, 21, 1412.
|
[15] |
Stein, A.-L.; Bilheria, F.-N.; Zeni, G. Chem. Commun. 2015, 51, 15522.
|
[16] |
(a) Qiu, S.-Z.; Zhang, C.-Y.; Qiu, R.; Yin, G.-D.; Huang, J.-K. Adv. Synth. Catal. 2018, 360, 313.
pmid: 15651824 |
(b) Yu, S.-Y.; Wu, J.-X.; He, X.-W.; Shang, Y.-J. Appl. Organomet. Chem. 2018, 32, e4156.
pmid: 15651824 |
|
(c) Topolovčan, N.; Hara, S.; Císařová, I.; Tošner, Z.; Kotora, M. Eur. J. Org. Chem. 2020, 2, 234.
pmid: 15651824 |
|
(d) Jitendra, R. H.; Theodore, J. A.; Alwyn, T. G.; Garcia, M. T.; Robert, D. S.; Peter, J. S. Green Chem. 2010, 12, 650.
pmid: 15651824 |
|
(e) Pati, A. K.; Mohapatra, M.; Ghosh, P.; Gharpure, S. J.; Mishra, A. K. J. Phys. Chem. A 2013, 117, 6548.
pmid: 15651824 |
|
(f) Kurita, T.; Abe, M.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Synlett 2007, 16, 2521.
pmid: 15651824 |
|
(g) Chen, S.-N.; Wu, W.-Y.; Tsai, F.-Y. Green Chem. 2009, 11, 269.
pmid: 15651824 |
|
(h) Batsanov, A. S.; Collings, J. C.; Fairlamb, I. J. S.; Holland, J. P.; Howard, J. A. K.; Lin, Z.-Y.; Marder, T. B.; Parsons, A. C.; Ward, R. M.; Zhu, J. J. Org. Chem. 2005, 70, 703.
pmid: 15651824 |
|
(i) Li, X.; Li, D.-J.; Bai, Y.-N.; Zhang, C.-X.; Chang, H.-H.; Gao, W.-C.; Wei, W.-L. Tetrahedron 2016, 72, 6996.
pmid: 15651824 |
|
(j) Zhang, S.-L.; Liu, X.-Y.; Wang, T.-Q. Adv. Synth. Catal. 2011, 353, 1463.
pmid: 15651824 |
|
(k) Chinta, B. S.; Baire, B. RSC Adv. 2016, 6, 54449.
pmid: 15651824 |
[1] | Fei Chen, Sheng Tao, Ning Liu, Bin Dai. CNN-Type Binuclear Cu(I) Complexes Catalyzed Direct Carboxylation via the Fixation of CO2 at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2471-2480. |
[2] | Liwen Ma, Xiaoye Wei, Zilin Zhao, Ang Zhao, Xiangwen Deng, Bingnan Huo, Gang Ma, Chunfang Zhang. Theoretical Study on the Catalytic Mechanism of Copper with Various Valence for the Terminal Alkyne Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1811-1819. |
[3] | Yinyin Wang, Xiaowan Lin, Piao Zhang, Meihua Shen, Huadong Xu, Defeng Xu. Design and Synthesis of Pyridine and 1,3,5-Triazine PNP Pincer Ligands and Their Application in Cobalt Catalyzed Semihydrogenation of Terminal Alkynes [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3312-3320. |
[4] | Jingru Liang, Bingying Wang, Chengyin Huang, Xiaojun Ye, Yanmei Wen. Synthesis of Symmetrical (E,E)-1,4-Diaryl-1,3-butadienes by One-Pot Method [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 2116-2120. |
[5] | Peng Zhou, Shangwei Feng, Huihua Qiu, Jiantao Zhang. Sodiump-Toluenesulfinate/KI-Mediated Aerobic Oxidative Iodination of Terminal Alkynes for Synthesis of 1-Iodoalkynes and 1,3-Diynes [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 394-399. |
[6] | Yao Ming, Zhang Jingjing, Yang Sen, Xiong Hangxing. γ-Aluminum Oxide-Mediated Iodination of Terminal Alkynes [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2153-2158. |
[7] | Hu Zhifang, Peng Lifen, Qiu Renhua, Orita Akihiro. Recent Progress of Protecting Groups for Terminal Alkynes [J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3112-3119. |
[8] | Wang, Yaqi, Yin, Qiang, Guo, Dun, Han, Limin, Sun, Qi, Hong, Hailong, Suo, Quanling, Suo. Quanling. Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2019, 39(10): 2898-2905. |
[9] | Ma Nan, Zeng Xianghua. Cu2O-Catalyzed Green Oxidative Terminal Alkynes Homocoupling without Bases [J]. Chin. J. Org. Chem., 2018, 38(6): 1556-1561. |
[10] | Qi Haitang, Song Guanglin, Quan Zhengjun, Wang Xicun. CuSO4·5H2O/NaAsc-Catalyzed Sonogashira Coupling Reaction of Aryl Iodides and Terminal Alkynes [J]. Chin. J. Org. Chem., 2017, 37(7): 1855-1859. |
[11] | Guan Zhipeng, Shi Yao, Shi Wei, Chen Hao. Synthesis of Terminal Alkynes/Diynes through Deprotection of Acetone Protected Alkynes under Mild Conditions [J]. Chin. J. Org. Chem., 2017, 37(2): 418-422. |
[12] | Li Fuwei, Wang Xiaolong, Yu Haitao. Preparation of 1,3,5-Trisubstituted Pyrazoles with Cascade Reaction Catalyzed by Cu between Hydrazonoyl Halide and Terminal Alkynes [J]. Chin. J. Org. Chem., 2016, 36(5): 1127-1132. |
[13] | Wang Chao, Deng Nan, Wang Lingling, Xu Dingjian, Yao Xiaoquan. Cu-Ag Bimetallic Nanoparticles Catalyzed Addition of Terminal Alkynes to Aldehydes [J]. Chin. J. Org. Chem., 2016, 36(5): 1034-1043. |
[14] | Li Yibiao, Cheng Liang, Chen Lu, Li Bin, Sun Ning, Qing Ning. One-Pot Synthesis of Substituted Thiophene and Furan Derivatives from Terminal Alkynes [J]. Chin. J. Org. Chem., 2016, 36(10): 2426-2436. |
[15] | Wu Gongde, Wang Xiaoli, Zhang Liming, Zhang Fang, Liu Xianfeng, Liu Congrong. One-Step Synthesis of 2,4-Disubstituted Thiazoles in Au(I) Complex/Zinc Salt Catalytic System [J]. Chin. J. Org. Chem., 2015, 35(12): 2537-2544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||