化学学报 ›› 2019, Vol. 77 ›› Issue (9): 803-813.DOI: 10.6023/A19060201 上一篇    下一篇

所属专题: 有机自由基化学

综述

炔丙基自由基在有机合成化学中的应用

路福东a, 姜烜a, 陆良秋a*(), 肖文精ab*()   

  1. a华中师范大学化学学院 农药与化学生物学教育部重点实验室 武汉 430079
    b中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
  • 收稿日期:2019-06-08 出版日期:2019-09-15 发布日期:2019-08-13
  • 通讯作者: 陆良秋,肖文精 E-mail:luliangqiu@mail.ccnu.edu.cn;wxiao@mail.ccnu.edu.cn
  • 作者简介:路福东, 1995年出生于山东安丘, 2017年在华中农业大学获得学士学位, 目前在肖文精教授和陆良秋教授指导下攻读硕士学位. 研究兴趣是可见光催化的不对称反应.|姜烜, 1994年出生于浙江江山, 2016年在武汉理工大学获得学士学位, 目前在肖文精教授和陆良秋教授指导下攻读硕士学位. 研究兴趣是可见光催化的脱氨基偶联反应.|陆良秋教授1982年出生于浙江绍兴, 2005年和2011年在华中师范大学化学学院先后获得学士和博士学位(导师: 肖文精教授), 随后留校工作. 2011年至2013年以洪堡学者身份赴德国莱布尼茨催化所Matthias Beller教授课题组进行博士后研究. 2015年6月, 破格晋升为教授. 其研究兴趣主要是过渡金属催化的偶极环化反应与可见光促进的有机光化学合成研究.|肖文精教授1965年出生于湖北公安, 1984年和1990年在华中师范大学化学系先后获得学士和硕士学位. 1997年至2000年在加拿大渥太华大学化学系学习并获得博士学位(导师: Howard Alper教授). 2001年至2002年在美国加州理工学院化学与化学工程系David W. C. MacMillan教授课题组从事博士后研究. 2003年加入华中师范大学化学学院. 其研究兴趣主要是发展新的方法学合成具有潜在生物活性的碳杂环化合物.
  • 基金资助:
    项目受国家自然科学基金(Nos. 21572074);项目受国家自然科学基金(21772052);项目受国家自然科学基金(21772053);湖北省自然科学基金资助(Nos. 2015CFA033);湖北省自然科学基金资助(2017AHB047)

Application of Propargylic Radicals in Organic Synthesis

Lu, Fu-Donga, Jiang, Xuana, Lu, Liang-Qiua*(), Xiao, Wen-Jingab*()   

  1. a Key Laboratory of Pesticide & Chemical Biology Ministry of Education and College of Chemistry, Central China Normal University, Wuhan 430079
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
  • Received:2019-06-08 Online:2019-09-15 Published:2019-08-13
  • Contact: Lu, Liang-Qiu,Xiao, Wen-Jing E-mail:luliangqiu@mail.ccnu.edu.cn;wxiao@mail.ccnu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China(Nos. 21572074);Project supported by the National Natural Science Foundation of China(21772052);Project supported by the National Natural Science Foundation of China(21772053);the Natural Science Foundation of Hubei Province(Nos. 2015CFA033);the Natural Science Foundation of Hubei Province(2017AHB047)

炔烃的合成与转化一直是有机合成化学的一个重要研究内容. 其中, 炔丙位官能化是实现炔烃合成与转化的一个重要途径. 相对于经历阳离子中间体途径的炔丙位官能化反应, 自由基途径的炔丙位官能化反应在最近十年才得以发展, 且与前者也已形成互补之势. 该类炔丙基自由基既能够通过炔丙位的碳杂键断裂生成, 又可通过自由基对1,3-烯炔的加成生成. 同时, 由于炔丙基自由基存在自由基与炔烃的共轭结构, 使得该自由基既能够直接对金属物种加成参与炔丙位的官能化反应, 又能够异构成联烯自由基后对金属物种加成, 继而参与联烯化合物的合成. 此外, 炔丙基自由基还可以被进一步氧化成炔丙基阳离子后参与后续的有机转化. 本综述根据炔丙基自由基所参与的反应类型, 对近年来炔丙位自由基参与的有机反应进行了简要总结.

关键词: 炔丙基自由基, 炔丙位官能化, 炔烃, 联烯, 过渡金属催化

The production and transformation of alkynes occupys an important position in organic synthetic chemistry. Within this realm, propargylic functionalization of alkynes is a feasible way towards this purpose. Especially, the propargylic functionalization via radical pathways has flourished in the last decade, which is believed to be a significant complement to the classic metal-catalyzed propargylation reaction involving cationic intermediates. According to the reaction modes, these advancements will be highlighted by classifying into four types. The first one is the propargylic functionalization reactions involving propargylic radicals. Generally, propargylic radicals can be generated through single electron reduction of alkyne substrates by low-valence metal catalysts or excited state of photocatalysts, then participated in the following cross-coupling reactions to achieve alkyne products. In this part, asymmetric variants have been also well developed. The second one is the preparation of allene compounds through the allenyl radical pathway. For these processes, propargylic radicals can isomerize to allenyl radicals, which can participate in the copper- or nickel-catalyzed coupling reaction to produce significant allene compounds. The third one is the dehydrative alkylation reaction of propargyl alcohols that involve propargylic radical intermediates, too. Such radical intermediates can be further oxidized to propargylic cation intermediates, followed by a deprotonation to form substituted 1,3-enyne compounds. The forth one is the synthesis of vinylic alkoxyamines through a propargylic radical route. Initially, propargyl alcohols can be converted to propargylic radical species by the joint action of copper catalysts and TEMPO. The generated propargylic radical species can be captured by TEMPO to form vinylic alkoxyamines. Finally, an outlook on the radical propargylic functionalizations will be provided at the end of this review.

Key words: propargylic radical, propargylic functionalization, alkyne, allene, transition metal catalysis