化学学报 ›› 2014, Vol. 72 ›› Issue (3): 301-318.DOI: 10.6023/A13090936 上一篇    下一篇

所属专题: 石墨烯

综述

拉曼光谱在石墨烯结构表征中的应用 2016 Awarded

吴娟霞a,b, 徐华a, 张锦a   

  1. a 北京大学纳米化学研究中心 北京大学化学与分子工程学院 北京 100871;
    b 北京大学前沿交叉学科研究院 北京 100871
  • 收稿日期:2013-09-06 出版日期:2014-03-14 发布日期:2013-11-14
  • 通讯作者: 张锦,E-mail:jinzhang@pku.edu.cn E-mail:jinzhang@pku.edu.cn
  • 基金资助:

    项目受国家自然科学基金(Nos. 21233001,21129001,51272006和51121091)和科技部项目(Nos. 2011YQ0301240201和2011CB932601)资助.

Raman Spectroscopy of Graphene

Wu Juanxiaaa,b, Xu Huaa, Zhang Jina   

  1. a Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871;
    b Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871
  • Received:2013-09-06 Online:2014-03-14 Published:2013-11-14
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21233001, 21129001, 51272006 and 51121091) and the Ministry of Science and Technology of the People's Republic of China (No. 2011YQ0301240201 and 2011CB932601).

石墨烯是sp2碳原子紧密堆积形成的二维原子晶体结构,因其独特的结构与性质引起了科学家们的广泛关注. 拉曼光谱是一种快速而又简洁的表征物质结构的方法. 主要综述了拉曼光谱技术在石墨烯结构表征中应用的一些最新进展. 首先,在系统分析石墨烯声子色散曲线的基础上介绍了石墨烯的典型拉曼特征(G’峰、G峰和D峰),讨论了G’峰、G峰和D峰在石墨烯层数的指认和石墨烯边缘与缺陷态分析中的应用;然后,通过对石墨烯拉曼G峰和G’峰的峰位、峰型以及强度的分析,讨论了石墨烯的层间堆垛方式、掺杂、基底、温度和应力等对石墨烯的电子能带结构的影响;最后,介绍了石墨烯中的二阶和频与倍频拉曼特征以及石墨烯的低频拉曼特征(剪切和层间呼吸振动模),并讨论了其对石墨烯结构的依赖性.

关键词: 石墨烯, 拉曼光谱, 层数依赖性, 堆垛效应, 和频与倍频, 低频振动模

Graphene, a monolayer of carbon atoms packed into a two-dimensional crystal structure, attracted intense attention owing to its unique structure and optical, electronic properties. Raman spectroscopy is a quick and precise method in material science and has been employed for many years to investigate material properties. It can be used to investigate the electronic band structure, the phonon energy dispersion and the electron-phonon interaction in graphene systems. In probing graphene's properties, Raman spectroscopy is considered to be a reliable method. In this review, we highlight recent progress of studying graphene structure using Raman spectroscopy. First, on the basis of systematically analyzing the phonon dispersion of graphene, the typical Raman scattering features of graphene, such as G band, G' band, and D band, and the basic physical process are introduced. Using these Raman fingerprints, we can quickly and directly distinguish the layer thickness of graphene, determine the edge chirality and monitor the type and density of defects in graphene. Second, stacking disorder will significantly modify the optical properties and interlayer coupling stretch of few-layer graphene so that the Raman features of graphene will be strongly influenced not only in the G band intensity but also in the intensity, lineshape and the frequency of G' band. According to the peak position, width, and intensity of the Raman G band and G' band in graphene, we also discuss the influence of doping, substrate, temperature, and strain on the electronic structure of graphene. Finally, we introduce the second order overtone and combination Raman modes and the low frequency Raman feature (shear and layer breathing mode) in graphene, and discuss the dependence of these peaks on the structure of graphene.

Key words: graphene, Raman spectroscopy, layer dependence, stacking effect, overtone and combination mode, low frequency mode