Acta Chim. Sinica ›› 2018, Vol. 76 ›› Issue (11): 838-849.DOI: 10.6023/A18060237 Previous Articles     Next Articles

Special Issue: 有机小分子-金属协同催化



张毛毛a, 骆元元a, 陆良秋a, 肖文精a,b   

  1. a. 华中师范大学化学学院 农药与化学生物学教育部重点实验室 武汉 430079;
    b. 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
  • 投稿日期:2018-06-16 发布日期:2018-08-13
  • 通讯作者: 陆良秋, 肖文精;
  • 作者简介:张毛毛,1991年出生于湖北襄阳,2015年在华中师范大学获得学士学位,2015年至今在肖文精教授和陆良秋教授指导下攻读博士学位.研究兴趣是过渡金属催化的偶极环化反应;骆元元,1995年出生于湖北襄阳,2014~2018年在华中师范大学化学学院本科学习,期间于肖文精教授课题组进行研究性学习;陆良秋教授1982年出生于浙江绍兴,2005年和2011年在华中师范大学化学学院先后获得学士和博士学位(导师:肖文精教授),随后留校工作.
  • 基金资助:


Advances on Asymmetric Allylic Substitutions under Synergetic Catalysis System with Transition Metals and Organocatalysts

Zhang Mao-Maoa, Luo Yuan-Yuana, Lu Liang-Qiua, Xiao Wen-Jinga,b   

  1. a. Key Laboratory of Pesticide & Chemical Biology Ministry of Education and College of Chemistry, Central China Normal University, Wuhan 430079;
    b. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
  • Received:2018-06-16 Published:2018-08-13
  • Contact: 10.6023/A18060237;
  • About author:张毛毛,1991年出生于湖北襄阳,2015年在华中师范大学获得学士学位,2015年至今在肖文精教授和陆良秋教授指导下攻读博士学位.研究兴趣是过渡金属催化的偶极环化反应;骆元元,1995年出生于湖北襄阳,2014~2018年在华中师范大学化学学院本科学习,期间于肖文精教授课题组进行研究性学习;陆良秋教授1982年出生于浙江绍兴,2005年和2011年在华中师范大学化学学院先后获得学士和博士学位(导师:肖文精教授),随后留校工作.
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21572074, 21772052 and 21772053) and the Natural Science Foundation of Hubei Province (Nos. 2015CFA033 and 2017AHB047).

Transition metal catalysis is one of the most important tools to accurately forge chemical bonds in modern organic synthesis. Organocatalysis, a biomimetic catalysis usually with metal-free small organic molecules, is a relatively young research area that started to flourish at the beginning of this century. Catalytic allylic substitutions are a kind of versatile reactions in organic chemistry; the combination of transition metal catalysis and organocatalysis in these reactions not only significantly expands the scope of nucleophiles, but also helps to resolve the stereocontrol issues. This paper will summarize the advance in the field of catalytic asymmetric allylic substitutions through synergetic transition metal-and organocatalysis. According to the source of chirality, these advances will be classified to three types. The first type is the catalytic asymmetric allylic substitutions induced by chiral transition metal catalysts. For these reactions, chiral ligands, including phosphine ligands and hybrid P, N ligands, have been used to achieve the high enantioselectivity. The non-chiral organocatalysts, such as pyrrolidine, Brønsted acids and boron reagents, were only used to activate the nucleophile or assist the generation of π-allyl metal intermediates. The second type is the catalytic asymmetric allylic substitutions induced by chiral organocatalysts. For the reaction of this type, various chiral organocatalysts, including chiral amines, chiral ureas and others, not only activate the substrates, but also control the enantioselectivity of allylic substitutions well through covalent and non-covalent bonds. Non-chiral ligands were only used to improve the catalytic capacity of transition metals. The last type is the catalytic asymmetric allylic substitutions induced by both of chiral transition metal catalysts and chiral organocatalyst. This strategy can not only realize the excellent stereo-control, but also achieve the challenging diastereo-diversity, if there exist continuous chiral centers. Overall, the joint utilization of transition metals and organocatalysts can achieve many significant asymmetric allylic substitutions that were previously difficult to realize through single transition metal catalysis. Meanwhile, the mechanism of representative transformations will be briefly introduced and at last, the prospective in this area will be given, such as simpler allylic sources and greener catalyst system.

Key words: asymmetric allylic substitution, synergetic catalysis, transition metal catalysis, organocatalysis