Acta Chimica Sinica ›› 2014, Vol. 72 ›› Issue (10): 1070-1074.DOI: 10.6023/A14050409 Previous Articles     Next Articles



王立伟a, 冯瑞a, 夏婧竹a, 陈盛a, 吴强a,b, 杨立军a, 王喜章a,b, 胡征 a,b   

  1. a 介观化学教育部重点实验室 南京大学化学化工学院 南京 210093;
    b 南京大学(苏州)高新技术研究院 苏州 215123
  • 投稿日期:2014-05-27 修回日期:2014-09-15 发布日期:2014-09-15
  • 通讯作者: 吴强,王喜章;
  • 基金资助:

    项目受国家自然科学基金(Nos. 51232003, 21473089, 21173115, 21173114, 21203092)﹑“973”项目(No. 2013CB932902)﹑江苏省科技支撑项目(No. BE2012159)和苏州市科技计划项目(No. ZXG2013025)资助.

Synthesis and Electrocatalytic Oxygen Reduction Performance of the Sulfur-Doped Carbon Nanocages

Wang Liweiaa, Feng Ruiaa, Xia Jingzhuaa, Chen Shengaa, Wu Qianga,b, Yang Lijunaa, Wang Xizhanga,b, Hu Zheng a,b   

  1. a Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093;
    b High-Tech Research Institute of Nanjing University (Suzhou), Suzhou, Jiangsu, 215123
  • Received:2014-05-27 Revised:2014-09-15 Published:2014-09-15
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 51232003, 21473089, 21173115, 21173114, 21203092), "973" program (No. 2013CB932902) and Jiangsu Province Science and Technology Support Project (No. BE2012159), Suzhou Science and Technology Plan Projects (No. ZXG2013025).

The sluggish oxygen reduction reaction (ORR) is the bottleneck in the development of fuel cells, and replacing precious and nondurable Pt catalysts by the material with low cost, high activity and good stability is a main challenge. Carbon-based metal-free ORR electrocatalysts have become a promising alternative of commercial Pt/C catalyst due to their superior catalytic activity, high stability and low cost. Recent studies revealed that the doping of N, B, P or S atoms could boost the ORR electrocatalytic performance of carbon nanomaterials, and the catalytic activities were highly dependent on the doping elements, amounts and microstructures. In this study, sulfur-doped carbon nanocages (SCNCs) were synthesized by chemical vapor deposition method using in situ generated MgO as template and thiophene/benzene as precursors. The resultant SCNCs possessed high specific surface area of ca. 1000 m2·g-1, abundant pore structure and superior graphitization degree. The X-ray photoelectron spectroscopy result showed sulfur atoms were doped into the carbon framework as the C―S―C moieties. The content of sulfur in the SCNCs was adjusted in the range of 0~3.45 at% by changing the amount of thiophene in the precursor. All the SCNCs samples had comparable specific surface area and similar pore structure. As an electrocatalyst for oxygen reduction reaction (ORR) in alkaline medium, the SCNCs exhibited a sulfur-content-dependent performance. The SCNCs with sulfur content of 0.84 at% demonstrated the optimal ORR performance. With further increasing the sulfur content, the ORR performance of the SCNCs gradually degraded and even inferior to that of the pure CNCs when the sulfur content was higher than 1.61 at%. In addition, the SCNCs showed better stability and immunity to methanol crossover than the Pt/C catalyst. This result is suggestive for designing advanced metal-free ORR electrocatalysts by regulating the species and content of dopants and doping microstructures.

Key words: carbon nanocages, sulfur doping, oxygen reduction, metal-free, fuel cells