Chin. J. Org. Chem. ›› 2018, Vol. 38 ›› Issue (4): 931-939.DOI: 10.6023/cjoc201709001 Previous Articles     Next Articles

Special Issue: 荧光探针-生物传感合辑 有机超分子化学合辑



李建玲a, 丁国华a, 牛燕燕b, 吴禄勇b, 段红叶a, 冯华杰a, 何文英b   

  1. a 海南师范大学化学与化工学院 海口 571158;
    b 热带药用植物化学教育部重点实验室 海口 571158
  • 收稿日期:2017-09-01 修回日期:2017-11-11 发布日期:2017-12-08
  • 通讯作者: 何文英, 冯华杰;
  • 基金资助:


Structural Properties of Ethyl 5-Phenyl-2-(3-(trifluoromethyl)phenyl)-2H-1,2,3-triazole-4-carboxylate and Chromo Genic Responses of Its Rhodamine B Derivatives to Hg2+ Ions

Li Jianlinga, Ding Guohuaa, Niu Yanyanb, Wu Luyongb, Duan Hongyea, Feng Huajiea, He Wenyingb   

  1. a College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158;
    b Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Haikou 571158
  • Received:2017-09-01 Revised:2017-11-11 Published:2017-12-08
  • Contact: 10.6023/cjoc201709001;
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 21562019), the Natural Science Foundation of Hainan Province (No. 20162027), the Hainan Province Natural Science Foundation of Innovative Research Team Project (No. 2016CXTD007) and the Program of Hainan Association for Science and Technology Plans to Youth R & D Innovation (No. HAST201621).

Ethyl 5-phenyl-2-(3-(trifluoromethyl)phenyl)-2H-1,2,3-triazole-4-carboxylate (EPFC), a newly synthesized compound, is used to study its structural properties and explore as a fluorescent probe for metal ions. EPFC was investigated in terms of structural, fluorescence spectroscopic, UV-Vis spectroscopic and theoretical analysis by using HF/6-31G(d), CIS/6-31G(d) and B3LYP/6-31G(d) methods, respectively. The corresponding product was characterized by NMR and HRESIMS methods. The interactions of the compound with 15 kinds of metal ions (Pb2+, Mn2+, K+, Na+, Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe3+, Zn2+, Ni2+, Hg2+, Li+ and Mg2+) were investigated by UV absorption spectroscopy and fluorescence spectroscopy. The quantum chemical values suggested that it is easy for EPFC to lose electron with weak electron accepting ability by frontier molecular orbital analysis. The calculated spectra were complimented with experimental measurements in great degree. In addition, a novel rhodamine B derivative containing 1,2,3-triazole unit, and REPFC was successfully designed and synthesized by the reaction between rhodamine B and EPFC. REPFC displayed more selectivity response to Hg2+ ion than other metal ions in N,N-dimethylformamide (DMF)-H2O (V/V=1/1, pH 7.4) within a REPFC concentration range of 2.67×10-5~4.67×10-5 mol·L-1 with an fluorescent enhancement and a rapid chemical reaction. The triazole appended colorless chemosensor turns to pink upon complex formation only with Hg2+ions even in the presence of other common metal ions and enables naked-eye detection. The coordination mechanism and turn on/off fluorescence for Hg2+ ions were well proposed by explaining Hg2+ inducing the ring-opened rhodamine B moiety. This study was an advancement for the application of 1,2,3-triazole compound and provides guidance for using simple and high-selectivity Hg2+ probes in aqueous solutions under physiological conditions.

Key words: 5-phenyl-2-(3-(trifluoromethyl) phenyl)-2H-1,2,3-triazole-4-carboxylate, structural property, rhodamine B, synthesis, chromogenic reaction, Hg2+ ion