Gold nanoparticles (Au NPs), smaller than 10 nm, have a high ratio of surface area to volume, and therefore have excellent catalytic activity. They are widely used in the field of catalysis. The concentration of small particle sized Au NPs synthesized by traditional wet chemical method is too low, and further enrichment is needed in order to meet the experimental requirements. However, small particle sized Au NPs are prone to aggregate during the concentration process and lose the catalytic activity. It is a challenge to concentrate the small Au NPs while keeping their catalytic activities. In this work, 500 nm silanized SiO2 particles which are covered by positive charges were used to adsorb 5 nm Au NPs through electrostatic interaction, and self-assemble to form Au NPs@SiO2 composite at room temperature. The loaded efficiency of Au NPs can reach 99.5% and the amount of Au NPs particles loaded on each SiO2 particle reached 800~1000, which greatly increased the effective concentration of Au NPs in the local area. Moreover, Au NPs enriched on the surface of SiO2 were bound by electrostatic action and uniformly distributed on the surface of SiO2 without agglomeration. The results showed that the catalytic activity of AuNPs@SiO2 was greatly enhanced by increasing the local concentration of AuNPs, and the catalytic activity was 3 times higher than that of AuNPs at the same concentration. After 5 times of reuse, the catalytic conversion efficiency
remained at about 80%. The Au NPs@SiO2 composite could be preserved for one month with the same structure and catalytic activity. Moreover, by adjusting the molar ratio of SiO2 and Au NPs, the assembly density of Au NPs at SiO2 can be precisely regulated, and the catalytic activity of Au NPs@SiO2 can also be changed precisely. This work provides a simple method for preparing small sized Au NPs with high concentration and greatly improves the catalytic activity of Au NPs. The method has wide application in enriching other small sized nanoparticles.
Key words:
gold nanoparticles,
catalytic activity,
enrichment,
the electrostatic interaction
引用此文
李威, 冉铁成, 张瑜, 何威, 马继飞, 汪启胜, 张继超, 诸颖. SiO2介导的5 nm金颗粒的高效富集及其催化活性研究[J]. 化学学报, 2020, 78(2): 170-176.
Li Wei, Ran Tiecheng, Zhang Yu, He Wei, Ma Jifei, Wang Qisheng, Zhang Jichao, Zhu Ying. SiO2-Mediated High-efficiency Enrichment of 5 nm Gold Nanoparticles and Their Catalytic Activity[J]. Acta Chimica Sinica, 2020, 78(2): 170-176.
导出引用 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Jacinto, M. J.; Kiyohara, P. K.; Masunaga, S. H.; Jardim, R. F.; Rossi, L. M. Appl. Catal. A:Gene. 2008, 338, 52. [2] Bian, Z.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. J. Am. Chem. Soc. 2014, 136, 458. [3] Pattadar, D. K.; Zamborini, F. P. J. Am. Chem. Soc. 2018, 140, 14126. [4] Mondal, B.; Mukherjee, P. S. J. Am. Chem. Soc. 2018, 140, 12592. [5] Kale, M. J.; Avanesian, T.; Christopher, P. ACS Catal. 2013, 4, 116. [6] Dong, H.; Zhu, M.; Yoon, J. A.; Gao, H.; Jin, R.; Matyjaszewski, K. J. Am. Chem. Soc. 2008, 130, 12852. [7] Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C.; Wang, L.; Meng, X.; Li, B.; Su, D. S.; Xiao, F. S. J. Am. Chem. Soc. 2019, 141, 2975. [8] Balogh, D.; Tel-Vered, R.; Freeman, R.; Willner, I. J. Am. Chem. Soc. 2011, 133, 6533. [9] Li, Y.; Lin, Z.; Li, R.-Z.; Liu, X. Acta Chim. Sinica 2012, 70, 1304(in Chinese). (李迎, 林钊, 李蓉卓, 刘霞, 化学学报, 2012, 70, 1304.) [10] Gittins, D. I.; Caruso, F. ChemPhysChem 2002, 3, 110. [11] Cheng, Z.; Ji, G.; Wang, F.; Zhang, X.; Yang, Y.; Li, J.; Wen, W.; Gao, X. Nucl. Tech. 2017, 40, 060101. [12] Qin, W.; Peng, T.; Gao, Y.; Wang, F.; Hu, X.; Wang, K.; Shi, J.; Li, D.; Ren, J.; Fan, C. Angew. Chem. Int. Ed. 2017, 56, 515. [13] Su, S.; Zou, M.; Zhao, H.; Yuan, C.; Xu, Y.; Zhang, C.; Wang, L.; Fan, C.; Wang, L. Nanoscale 2015, 7, 19129. [14] Li, K.; Wang, K.; Qin, W.; Deng, S.; Li, D.; Shi, J.; Huang, Q.; Fan, C. J. Am. Chem. Soc. 2015, 137, 4292. [15] Zhang, Q.; Wu, S.-Y.; He, M.-W.; Zhang, L.; Liu, Y.; Li, J.-H.; Song, X.-M. Acta Chim. Sinica 2012, 70, 2213(in Chinese). (张谦, 吴抒遥, 何茂伟, 张玲, 刘洋, 李景虹, 宋溪明, 化学学报, 2012, 70, 2213.) [16] Chen, N.; Wei, M.; Sun, Y.; Li, F.; Pei, H.; Li, X.; Su, S.; He, Y.; Wang, L.; Shi, J.; Fan, C.; Huang, Q. Small 2014, 10, 368. [17] Yang, X.; Li, J.; Pei, H.; Li, D.; Zhao, Y.; Gao, J.; Lu, J.; Shi, J.; Fan, C.; Huang, Q. Small 2013, 9, 2844. [18] Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; Wang, P.; Zhou, Z.; Nie, S.; Wei, H. ACS Nano 2017, 11, 5558. [19] Mi, L.; Wen, Y.; Pan, D.; Wang, Y.; Fan, C.; Hu, J. Small 2009, 5, 2597. [20] Liu, M.; Wang, K.; Chen, N.; Wang, L. Nucl. Tech. 2015, 38, 090501. [21] Zhang, Z.-X.; Luan, W.-X.; Zhang, C.-Y.; Liu, Y.-J. Acta Chim. Sinica 2017, 75, 403(in Chinese). (张召香, 栾文秀, 张超英, 刘玉洁, 化学学报, 2017, 75, 403.) [22] Bo, Y.; Yang, Q.; Meng, Q.; Hu, Y.; Huang, S.-S. Acta Chim. Sinica 2010, 68, 672(in Chinese). (卜扬, 杨清, 孟琦, 胡赢, 黄杉生, 化学学报, 2010, 68, 672.) [23] Wang, C.; Zhang, H.; Zeng, D.; San, L.; Mi, X. Chin. J. Chem. 2016, 34, 299. [24] Ma, X.-P.; Lun, N.; Li, X.; Wen, S.-L.; Wu, Z.-P. J. Chin. Electr. Microsc. Soc. 2004, 23, 379(in Chinese). (马希骋, 伦宁, 李霞, 温树林, 吴中平, 电子显微学报, 2004, 23, 379.) [25] Kim, Y.; Jo, A.; Ha, Y.; Lee, Y.; Lee, D.; Lee, Y.; Lee, C. Electro-analysis 2018, 30, 2861. [26] Hu, S.; Liu, X.; Wang, C.; Camargo, P. H. C.; Wang, J. ACS Appl. Mater. Interfaces 2019, 11, 17444. [27] Nehra, K.; Pandian, S. K.; Byram, C.; Moram, S. S. B.; Soma, V. R. J. Phys. Chem. C 2019, 123, 16210. [28] Wang, C.; Shi, Y.; Dan, Y. Y.; Nie, X. G.; Li, J.; Xia, X. H. Chem. Eur. J. 2017, 23, 6717. [29] Wang. L.-C.; Fang, Z.; Huang, X.-S.; Cao, Y. Pet. Tech. 2007, 36, 869(in Chinese). (王路存, 方正, 黄新松, 曹勇, 石油化工, 2007, 36, 869.) [30] Zhang, P.; Qiao, Z. A.; Jiang, X.; Veith, G. M.; Dai, S. Nano Lett. 2015, 15, 823. [31] Fuerte, A.; Corma, A.; Iglesias, M.; Morales, E.; Sánchez, F. Catal. Lett. 2005, 101, 99. [32] Amin, M. A.; Fadlallah, S. A.; Alosaimi, G. S.; Ahmed, E. M.; Mostafa, N. Y.; Roussel, P.; Szunerits, S.; Boukherroub, R. ACS Appl. Mater. Interfaces 2017, 9, 30115. [33] Brust, M.; Gordillo, G. J. J. Am. Chem. Soc. 2012, 134, 3318. [34] Thangavel, S.; Ramaraj, R. J. Phys. Chem. C 2008, 112, 19825. [35] Maduraiveeran, G.; Ramaraj, R. Electrochem. Commun. 2007, 9, 2051. [36] Zhou, X.; Xu, W.; Liu, G.; Panda, D.; Chen, P. J. Am. Chem. Soc. 2009, 132, 136. [37] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Am. Chem. Soc. 1994, 7. [38] Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. J. Phys. Chem. B 2006, 110, 15700. [39] Manna, A.; Chen, P.-L.; Akiyama, H.; Wei, T.-X.; Tamada, K.; Knoll, W. Chem. Mater. 2003, 15, 20. [40] Turkevich, J.; Stevenson, P. C.; Hillier, J. Faraday. Discuss. Soc. 1951, 11, 55. [41] Perrault, S. D.; Chan, W. C. W. J. Am. Chem. Soc. 2009, 131, 17042. [42] Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. J. Am. Chem. Soc. 2016, 138, 16645. [43] Chegel, V.; Rachkov, O.; Lopatynskyi, A.; Ishihara, S.; Yanchuk, I.; Nemoto, Y.; Hill, J. P.; Ariga, K. J. Phys. Chem. C 2012, 116, 2683. [44] Zakaria, H. M.; Shah, A.; Konieczny, M.; Hoffmann, J. A.; Nijdam, A. J.; Reeves, M. E. Langmuir 2013, 29, 7661. [45] Shi, L.; Jing, C.; Ma, W.; Li, D.-W.; Halls, J. E.; Marken, F.; Long, Y.-T. Angew. Chem. Int. Ed. 2013, 52, 6011. [46] Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.-T.; Fan, C. Angew. Chem. Int. Ed. 2011, 50, 11994. [47] Wang, H.-S.; Zhao, W.-X. Chin. J. Org. Chem. 2013, 33, 1822(in Chinese). (王宏社, 赵卫星, 有机化学, 2013, 33, 1822.) [48] Xiao, J.-J.; Qiu, Z.-M.; He, W.-J.; Du, C.-C.; Zhou, W. Chin. J. Org. Chem. 2016, 36, 987(in Chinese). (肖建军, 邱祖民, 何维娟, 杜成成, 周伟, 有机化学, 2016, 36, 987.) [49] Choi, D.; Ham, S.; Jang, D.-J. Mater. Res. Bull. 2019, 120, 110578. [50] Cao, N.; Zeng, P.; Zhao, F.; Zeng, B. Talanta 2019, 204, 402. [51] Li, L.; Si, Y.; He, B.; Li, J. Talanta 2019, 205, 120116. |
[1] |
陈其文, 张先正. 纳米酶介导的炎性肠道疾病治疗研究进展★[J]. 化学学报, 2023, 81(8): 1043-1051. |
[2] |
李畅, 郑振东, 郑江南, 田瑞军. 基于可断裂双功能探针的糖蛋白分析★[J]. 化学学报, 2023, 81(12): 1673-1680. |
[3] |
闫续, 屈贺幂, 常烨, 段学欣. 金属有机框架在气体预富集、预分离及检测中的应用[J]. 化学学报, 2022, 80(8): 1183-1202. |
[4] |
税子怡, 何娜娜, 陈黎, 赵炜, 陈曦. 多孔钙钛矿型氧还原催化剂在柔性铝空气电池中的应用研究[J]. 化学学报, 2020, 78(6): 557-564. |
[5] |
闫琳, 任永硕, 王雪靖, 穆韡, 韩晓军. 凝聚体及其在人造细胞领域中的应用[J]. 化学学报, 2020, 78(11): 1150-1163. |
[6] |
冯婷婷, 高首勤, 王堃. 基于金纳米颗粒的比色传感体系用于前列腺特异性膜抗原的检测[J]. 化学学报, 2019, 77(5): 422-426. |
[7] |
楚婉怡, 唐笑, 李振, 林景诚, 钱觉时. 液相合成超薄TiO2纳米片微结构影响因素研究[J]. 化学学报, 2018, 76(7): 549-555. |
[8] |
顾天航, 石君明, 滑熠龙, 刘静, 王伟, 张伟贤. 应用纳米零价铁富集银的研究[J]. 化学学报, 2017, 75(10): 991-997. |
[9] |
张丽霞, 杜秀芳, 曾盈. 糖蛋白/糖肽分离富集中的化学[J]. 化学学报, 2016, 74(2): 149-154. |
[10] |
闫卓君, 元野, 刘佳, 李勤, 阮南中, 张大明, 田宇阳, 朱广山. 定向合成带电荷多孔芳香骨架材料用于碘单质的捕获和释放[J]. 化学学报, 2016, 74(1): 67-73. |
[11] |
李先琴, 俞冬萍, 丰小敏, 郭志谋, 李秀玲, 邹丽娟, 梁鑫淼. 一种弱阳离子交换材料的亲水模式糖肽富集新方法[J]. 化学学报, 2015, 73(10): 1074-1079. |
[12] |
韩若冰, 芦姗, 王艳杰, 张雪华, 吴强, 贺涛. SO4-和I-共掺杂的聚苯胺对电极在染料敏化太阳电池中的应用[J]. 化学学报, 2015, 73(10): 1061-1068. |
[13] |
丰小敏, 沈爱金, 李先琴, 李秀玲, 邹丽娟, 梁鑫淼. 混合模式色谱材料Click TE-GSH高效富集多磷酸化肽[J]. 化学学报, 2014, 72(10): 1085-1091. |
[14] |
王都留, 杨建东, 杨升宏, 郭锦秀. FePO4包覆Fe3O4磁性纳米微粒的合成及其在Cr(III)富集分离中的应用[J]. 化学学报, 2013, 71(9): 1287-1292. |
[15] |
刘丽婷, 张莹, 焦竞, 杨芃原, 陆豪杰. 硼酸功能化介孔纳米材料的制备及其对糖肽的富集研究[J]. 化学学报, 2013, 71(04): 535-540. |
|