化学学报 ›› 2024, Vol. 82 ›› Issue (6): 707-730.DOI: 10.6023/A24030071 上一篇
综述
投稿日期:
2024-03-06
发布日期:
2024-04-28
作者简介:
李小贞, 2018年于中国科学院福建物质结构研究所获得理学博士学位, 2018~2021年在中国科学院福建物质结构研究所从事博士后研究, 2021年~2022年在中国科学院福建物质结构研究所担任副研究员, 2022年入职福建师范大学. 主要研究方向为超分子自组装和手性稀土功能材料. |
孙庆福, 中国科学院福建物质结构研究所研究员, 课题组长. 2011年获东京大学应用化学专业博士学位, 留日期间曾获日本学术振兴会青年科学家(JSPS-DC及JSPS-PD)项目及国家优秀自费留学生奖学金资助. 2012年赴美国能源部资助下的劳伦斯伯克利国家实验室及加州大学伯克利分校进行博士后研究. 2013年以国家高层次人才引进到中国科学院福建物质结构研究所独立开展研究工作. 主要研究兴趣包括大环和笼状超分子配合物的设计合成、发光及磁性调控、主客体性质及仿酶催化等, 研究成果发表在Science, Nat. Chem., Nat. Commun., J. Am. Chem. Soc.等知名期刊. 曾获得国家自然科学基金委杰出青年基金、中组部“海外高层次人才计划”、中科院“人才引进计划”、福建省“创新创业人才计划”等人才项目, 获得中国化学会青年化学奖、中科院优秀导师奖、福建省青年五四奖章标兵、福建省青年科技奖等荣誉. |
基金资助:
Xiaozhen Lia,b, Qingfu Sunb,*()
Received:
2024-03-06
Published:
2024-04-28
Contact:
* E-mail: Supported by:
文章分享
圆偏振光(CPL)是一种特殊而重要的光, 在三维显示、有机光电器件、安全油墨、生物和化学探针等方面具有广泛应用前景. 发光不对称因子和发光量子产率是衡量圆偏振发光性能的重要指标. 受磁跃迁偶极矩较小的影响, 大部分手性材料的发光不对称因子较小. 稀土金属离子优异的光、电性能和部分磁偶极跃迁允许特性使手性稀土化合物被认为是理想的具有高发光不对称因子和高发光量子产率的圆偏振发光材料. 基于此, 本综述归纳总结了手性稀土材料在可见光、近红外光和双光子激发圆偏振发光材料等方面的研究进展, 探讨了配体、溶剂、阴离子、多级自组装作用和外界刺激等因素对圆偏振发光性能的调控规律, 总结了手性稀土圆偏振发光材料在圆偏振有机发光二极管、生物传感、检测、防伪和成像等方面的应用, 以及该领域目前面临的主要机遇和挑战.
李小贞, 孙庆福. 稀土圆偏振发光材料研究进展[J]. 化学学报, 2024, 82(6): 707-730.
Xiaozhen Li, Qingfu Sun. Research Progress of Rare Earth-Based Circularly Polarized Luminescent Materials[J]. Acta Chimica Sinica, 2024, 82(6): 707-730.
化合物 | λem/nm | PLQY/% | 跃迁 | glum | 文献 | |
---|---|---|---|---|---|---|
[EuL1]3+ | 0.06/H2O 0.3/D2O | [ | ||||
[EuRL4]3+ | 588, 593, 615, 668, 687 | 5D0→7FJ | +0.02, –0.03 (ΔJ=1), 0.12, 0.4, –0.11 (ΔJ=2,3,4) | [ | ||
[EuRL5]3+ | 580, 590, 615, 650, 680 | 5D0→7FJ | –0.12, +0.18 (ΔJ=1) –0.1, –0.3, –0.11 (ΔJ=2,3,4) | [ | ||
[EuSL6]3+ | 588, 595, 614 | 21/H2O 27/D2O | 5D0→7FJ | +0.18, –0.16 (ΔJ=1), –0.04 (ΔJ=2) | [ | |
[EuSL7]– | 591, 657 | 14/H2O/MeOH 47/DMSO | 5D0→7FJ | –0.18 (ΔJ=1) +0.17 (ΔJ=3) | [ | |
[EuRL7]– | 591, 657 | 14.9/H2O/MeOH 53/DMSO | 5D0→7FJ | +0.17 (ΔJ=1) +0.13 (ΔJ=3) | [ | |
[EuSL8]– | 591, 657 | 11/H2O/MeOH 0.45/DMSO | 5D0→7FJ | –0.11 (ΔJ=1) –0.12 (ΔJ=3) | [ | |
[EuSL9]– | 591, 657 | 0.40/DMSO | 5D0→7FJ | +0.30 (ΔJ=1) +0.25 (ΔJ=3) | [ | |
[EuSL10]– | 591, 653 | 10.2/H2O/MeOH 44.1/DMSO | 5D0→7FJ | –0.11 (ΔJ=1) –0.10 (ΔJ=3) | [ | |
[EuSL11]– | 588, 657 | 21.9/H2O/MeOH 49.7/DMSO | 5D0→7FJ | –0.17 (ΔJ=1) –0.29 (ΔJ=3) | [ | |
[EuRL14]+ | 596 | 2.3 | 5D0→7F1 | +0.298 | [ | |
EuL15 | 586.6, 594.2, 543.6 | 7.7 | 5D0→7F1 | ±0.046, ±0.12, ±0.083 | [ | |
[EuRRL17]3+ | 5D0→7F1 5D0→7F4 | –0.19, –0.22 | [ | |||
[EuRL18]3+ | 590 | 5D0→7F1 | +0.02 | [ | ||
[EuRL19-Me]2+ | 587 | 55 | 1.7×10–3 | [ | ||
[EuRL19-iPr]2+ | 560 | 53 | 1.8×10–3 | [ | ||
[EuL20]+ | 598, 607 | 5D0→7FJ | ±0.2 (ΔJ=1), ±0.2 (ΔJ=2) | [ | ||
Eu(+L23)3 | 588.2 | –0.78 | [ | |||
Eu(+L24)3 | 612 | 5D0→7F2 | +0.003 | [ | ||
Cs[Eu(+L24)4] | 595, 612 | 5D0→7FJ | +1.38 (ΔJ=1) –0.23 (ΔJ=2) | [ | ||
Cs[Eu(+L24)4] | 595, 612 | 5D0→7FJ | +1.32 (ΔJ=1) –0.19 (ΔJ=2) | [ | ||
Na[Eu(+L24)4] | 595, 612 | 5D0→7FJ | +0.06 (ΔJ=1) –0.01 (ΔJ=2) | [ | ||
Cs[Eu(L24)4] | 594 | 5D0→7F1 | ±0.15 | [ | ||
Cs[Eu(L25)4] | 594 | 5D0→7F1 | ±0.15 | [ | ||
Cs[Eu(L25)4] | 594 | 5D0→7F1 | ±0.82 | [ | ||
[Eu(L27)3]3+ | 590.5, 595.3, 615.6 | 5D0→7FJ | ±0.19, ±0.18 (ΔJ=1) ±0.21 (ΔJ=2) | [ | ||
Eu(L30)3 | 600, 619 | ±0.13, ±0.06 | [ | |||
[Eu(L32)2]3+ | 593 | ±0.12 | [ | |||
[Eu(L33)2]3+ | 592.2, 616.2 | 17 | ±0.18, ±0.03 | [ | ||
[Eu(L34)3]3+ | 4 | 5D0→7F1 | ±0.028, ±0.020 | [ | ||
Eu(L37)2(OTf)3 | 593 | 5D0→7F1 | ±0.120 | [ | ||
EuSL62 | 595, 600, 658, 708, 713 | 11 | 5D0→7FJ | +0.18, +0.33, –0.25, +0.31, –0.37 | [ | |
EuL63 | 557, 599, 655, 708 | 47 | 5D0→7FJ | ±0.19, ±0.15, ±0.19, ±0.32 | [ | |
[TbSL1]3+ | 545, 620 | 25 | 5D4→7FJ | –0.25 (ΔJ=–1), +0.29(ΔJ=+1) | [ | |
[TbRL4]3+ | 49/H2O 81/D2O | [ | ||||
[TbSL6]3+ | 545 | 36/H2O 46/D2O | 5D4→7F5 | +0.12 | [ | |
[TbSL6']3+ | 489, 540, 583 | 5D4→7FJ | +0.02, –0.13, +0.01 | [ | ||
[TbSL12]– | 542.5, 551 | 5D4→7F5 | 0.285, 0.173 | [ | ||
[TbSL13]– | 542.5, 551 | 5D4→7F5 | 0.241, 0.151 | [ | ||
[TbRL14]+ | 543 | 63 | 5D4→7F5 | +0.044 | [ | |
TbL15 | 545.8, 551 | 57 | 5D4→7F5 | ±0.078, ±0.051 | [ | |
TbL16 | 542.0, 545.6, 551.2 | 30 | 5D4→7F5 | ±0.14, ±0.34, ±0.40 | [ | |
[TbRRL17]3+ | 5D4→7F5 | –0.19 | [ | |||
[TbRL18]3+ | 540 | 5D4→7F5 | –0.01, +0.06, –0.02 | [ | ||
[TbL20]+ | 546 | 5D4→7F5 | ±0.01 (ΔJ=1) | [ | ||
[Tb(RL26)3]3+ | 542 | 1.2 | 5D4→7F5 | 0.02 | [ | |
[Tb(L29)3]3+ | 546 | 5D4→7F5 | ±0.05 | [ | ||
[Tb(L31)3]3+ | 542 | ±0.14 | [ | |||
[Tb(L34)3]3+ | 0.022 | 5D4→7F5 | ±0.06 | [ | ||
Tb(L35)3Na3(thf)6 | 524 | 26 | 5D4→7F5 | ±0.32 | [ | |
Tb(L36)3Na3(thf)6 | 545 | 84.6 | 5D4→7F5 | ±0.53 | [ | |
TbSL62 | 539, 543, 548, 620, 622 | 50 | 5D4→7FJ | +0.16, –0.25, +0.32, +0.28, –0.32 | [ | |
[DyRL1]3+ | 657, 667 | 4F9/2→6H11/2 | 0.35, –0.41 | [ | ||
[DyRL14]+ | 669 | 1.3 | 4F9/2→6H11/2 | +0.013 | [ | |
Dy(L35)3Na3(thf)6 | 756 | 17 | 4F9/2→6H9/2 | ±0.33 | [ | |
Dy(L36)3Na3(thf)6 | 760 | 15.5 | 4F9/2→6H9/2 | ±0.53 | [ | |
[SmRL14]+ | 565, 597 | 0.8 | 4G5/2→6H7/2 4G5/2→6H5/2 | –0.027, –0.028 | [ | |
Cs[Sm(+L24)4] | 553, 561, 575, 588, 598, 605, 611, 617 | 4G5/2→6HJ | –1.15, –0.35, +0.96 (ΔJ=0) –0.45, +1.15, –0.76, +0.24, +0.15 (ΔJ=1) | [ | ||
[Sm(L29)3]3+ | 560, 600 | ±0.5, ±0.28 | [ | |||
Sm(L35)3Na3(thf)6 | 603 | 4 | 4G5/2→6H7/2 | ±0.44 | [ | |
Sm(L36)3Na3(thf)6 | 610 | 2.8 | 4G5/2→6H7/2 | ±0.50 | [ | |
Sm(L37)2(OTf)3 | 559 | 4G5/2→6H5/2 | ±0.272 | [ |
化合物 | λem/nm | PLQY/% | 跃迁 | glum | 文献 | |
---|---|---|---|---|---|---|
[EuL1]3+ | 0.06/H2O 0.3/D2O | [ | ||||
[EuRL4]3+ | 588, 593, 615, 668, 687 | 5D0→7FJ | +0.02, –0.03 (ΔJ=1), 0.12, 0.4, –0.11 (ΔJ=2,3,4) | [ | ||
[EuRL5]3+ | 580, 590, 615, 650, 680 | 5D0→7FJ | –0.12, +0.18 (ΔJ=1) –0.1, –0.3, –0.11 (ΔJ=2,3,4) | [ | ||
[EuSL6]3+ | 588, 595, 614 | 21/H2O 27/D2O | 5D0→7FJ | +0.18, –0.16 (ΔJ=1), –0.04 (ΔJ=2) | [ | |
[EuSL7]– | 591, 657 | 14/H2O/MeOH 47/DMSO | 5D0→7FJ | –0.18 (ΔJ=1) +0.17 (ΔJ=3) | [ | |
[EuRL7]– | 591, 657 | 14.9/H2O/MeOH 53/DMSO | 5D0→7FJ | +0.17 (ΔJ=1) +0.13 (ΔJ=3) | [ | |
[EuSL8]– | 591, 657 | 11/H2O/MeOH 0.45/DMSO | 5D0→7FJ | –0.11 (ΔJ=1) –0.12 (ΔJ=3) | [ | |
[EuSL9]– | 591, 657 | 0.40/DMSO | 5D0→7FJ | +0.30 (ΔJ=1) +0.25 (ΔJ=3) | [ | |
[EuSL10]– | 591, 653 | 10.2/H2O/MeOH 44.1/DMSO | 5D0→7FJ | –0.11 (ΔJ=1) –0.10 (ΔJ=3) | [ | |
[EuSL11]– | 588, 657 | 21.9/H2O/MeOH 49.7/DMSO | 5D0→7FJ | –0.17 (ΔJ=1) –0.29 (ΔJ=3) | [ | |
[EuRL14]+ | 596 | 2.3 | 5D0→7F1 | +0.298 | [ | |
EuL15 | 586.6, 594.2, 543.6 | 7.7 | 5D0→7F1 | ±0.046, ±0.12, ±0.083 | [ | |
[EuRRL17]3+ | 5D0→7F1 5D0→7F4 | –0.19, –0.22 | [ | |||
[EuRL18]3+ | 590 | 5D0→7F1 | +0.02 | [ | ||
[EuRL19-Me]2+ | 587 | 55 | 1.7×10–3 | [ | ||
[EuRL19-iPr]2+ | 560 | 53 | 1.8×10–3 | [ | ||
[EuL20]+ | 598, 607 | 5D0→7FJ | ±0.2 (ΔJ=1), ±0.2 (ΔJ=2) | [ | ||
Eu(+L23)3 | 588.2 | –0.78 | [ | |||
Eu(+L24)3 | 612 | 5D0→7F2 | +0.003 | [ | ||
Cs[Eu(+L24)4] | 595, 612 | 5D0→7FJ | +1.38 (ΔJ=1) –0.23 (ΔJ=2) | [ | ||
Cs[Eu(+L24)4] | 595, 612 | 5D0→7FJ | +1.32 (ΔJ=1) –0.19 (ΔJ=2) | [ | ||
Na[Eu(+L24)4] | 595, 612 | 5D0→7FJ | +0.06 (ΔJ=1) –0.01 (ΔJ=2) | [ | ||
Cs[Eu(L24)4] | 594 | 5D0→7F1 | ±0.15 | [ | ||
Cs[Eu(L25)4] | 594 | 5D0→7F1 | ±0.15 | [ | ||
Cs[Eu(L25)4] | 594 | 5D0→7F1 | ±0.82 | [ | ||
[Eu(L27)3]3+ | 590.5, 595.3, 615.6 | 5D0→7FJ | ±0.19, ±0.18 (ΔJ=1) ±0.21 (ΔJ=2) | [ | ||
Eu(L30)3 | 600, 619 | ±0.13, ±0.06 | [ | |||
[Eu(L32)2]3+ | 593 | ±0.12 | [ | |||
[Eu(L33)2]3+ | 592.2, 616.2 | 17 | ±0.18, ±0.03 | [ | ||
[Eu(L34)3]3+ | 4 | 5D0→7F1 | ±0.028, ±0.020 | [ | ||
Eu(L37)2(OTf)3 | 593 | 5D0→7F1 | ±0.120 | [ | ||
EuSL62 | 595, 600, 658, 708, 713 | 11 | 5D0→7FJ | +0.18, +0.33, –0.25, +0.31, –0.37 | [ | |
EuL63 | 557, 599, 655, 708 | 47 | 5D0→7FJ | ±0.19, ±0.15, ±0.19, ±0.32 | [ | |
[TbSL1]3+ | 545, 620 | 25 | 5D4→7FJ | –0.25 (ΔJ=–1), +0.29(ΔJ=+1) | [ | |
[TbRL4]3+ | 49/H2O 81/D2O | [ | ||||
[TbSL6]3+ | 545 | 36/H2O 46/D2O | 5D4→7F5 | +0.12 | [ | |
[TbSL6']3+ | 489, 540, 583 | 5D4→7FJ | +0.02, –0.13, +0.01 | [ | ||
[TbSL12]– | 542.5, 551 | 5D4→7F5 | 0.285, 0.173 | [ | ||
[TbSL13]– | 542.5, 551 | 5D4→7F5 | 0.241, 0.151 | [ | ||
[TbRL14]+ | 543 | 63 | 5D4→7F5 | +0.044 | [ | |
TbL15 | 545.8, 551 | 57 | 5D4→7F5 | ±0.078, ±0.051 | [ | |
TbL16 | 542.0, 545.6, 551.2 | 30 | 5D4→7F5 | ±0.14, ±0.34, ±0.40 | [ | |
[TbRRL17]3+ | 5D4→7F5 | –0.19 | [ | |||
[TbRL18]3+ | 540 | 5D4→7F5 | –0.01, +0.06, –0.02 | [ | ||
[TbL20]+ | 546 | 5D4→7F5 | ±0.01 (ΔJ=1) | [ | ||
[Tb(RL26)3]3+ | 542 | 1.2 | 5D4→7F5 | 0.02 | [ | |
[Tb(L29)3]3+ | 546 | 5D4→7F5 | ±0.05 | [ | ||
[Tb(L31)3]3+ | 542 | ±0.14 | [ | |||
[Tb(L34)3]3+ | 0.022 | 5D4→7F5 | ±0.06 | [ | ||
Tb(L35)3Na3(thf)6 | 524 | 26 | 5D4→7F5 | ±0.32 | [ | |
Tb(L36)3Na3(thf)6 | 545 | 84.6 | 5D4→7F5 | ±0.53 | [ | |
TbSL62 | 539, 543, 548, 620, 622 | 50 | 5D4→7FJ | +0.16, –0.25, +0.32, +0.28, –0.32 | [ | |
[DyRL1]3+ | 657, 667 | 4F9/2→6H11/2 | 0.35, –0.41 | [ | ||
[DyRL14]+ | 669 | 1.3 | 4F9/2→6H11/2 | +0.013 | [ | |
Dy(L35)3Na3(thf)6 | 756 | 17 | 4F9/2→6H9/2 | ±0.33 | [ | |
Dy(L36)3Na3(thf)6 | 760 | 15.5 | 4F9/2→6H9/2 | ±0.53 | [ | |
[SmRL14]+ | 565, 597 | 0.8 | 4G5/2→6H7/2 4G5/2→6H5/2 | –0.027, –0.028 | [ | |
Cs[Sm(+L24)4] | 553, 561, 575, 588, 598, 605, 611, 617 | 4G5/2→6HJ | –1.15, –0.35, +0.96 (ΔJ=0) –0.45, +1.15, –0.76, +0.24, +0.15 (ΔJ=1) | [ | ||
[Sm(L29)3]3+ | 560, 600 | ±0.5, ±0.28 | [ | |||
Sm(L35)3Na3(thf)6 | 603 | 4 | 4G5/2→6H7/2 | ±0.44 | [ | |
Sm(L36)3Na3(thf)6 | 610 | 2.8 | 4G5/2→6H7/2 | ±0.50 | [ | |
Sm(L37)2(OTf)3 | 559 | 4G5/2→6H5/2 | ±0.272 | [ |
[1] |
Tan, Y. B.; Okayasu, Y.; Katao, S.; Nishikawa, Y.; Asanoma, F.; Yamada, M.; Yuasa, J.; Kawai, T. J. Am. Chem. Soc. 2020, 142, 17653.
|
[2] |
Zhang, M.; Guo, Q.; Li, Z.; Zhou, Y.; Zhao, S.; Tong, Z.; Wang, Y.; Li, G.; Jin, S.; Zhu, M.; Zhuang, T.; Yu, S.-H. Sci. Adv. 2023, 9, eadi9944.
|
[3] |
Luo, J.; Lin, T.; Zhang, J.; Chen, X.; Blackert, E. R.; Xu, R.; Yakobson, B. I.; Zhu, H. Science 2023, 382, 698.
|
[4] |
Cui, Y.; Chen, B.; Qian, G. Coord. Chem. Rev. 2014, 273-274, 76.
|
[5] |
Xu, L.-J.; Xu, G.-T.; Chen, Z.-N. Coord. Chem. Rev. 2014, 273-274, 47.
|
[6] |
Liu, Z.; Wang, Y.-X.; Fang, Y.-H.; Qin, S.-X.; Wang, Z.-M.; Jiang, S.-D.; Gao, S. Nat. Sci. Rev. 2020, 7, 1557.
|
[7] |
Su, P.-R.; Wang, T.; Zhou, P.-P.; Yang, X.-X.; Feng, X.-X.; Zhang, M.-N.; Liang, L.-J.; Tang, Y.; Yan, C.-H. Nat. Sci. Rev. 2021, 9, nwab016.
|
[8] |
Hu, S.-J.; Guo, X.-Q.; Zhou, L.-P.; Cai, L.-X.; Sun, Q.-F. Chin. J. Chem. 2019, 37, 657.
|
[9] |
Carr, R.; Evans, N. H.; Parker, D. Chem. Soc. Rev. 2012, 41, 7673.
|
[10] |
Gong, Z.-L.; Zhu, X.; Zhou, Z.; Zhang, S.-W.; Yang, D.; Zhao, B.; Zhang, Y.-P.; Deng, J.; Cheng, Y.; Zheng, Y.-X.; Zang, S.-Q.; Kuang, H.; Duan, P.; Yuan, M.; Chen, C.-F.; Zhao, Y. S.; Zhong, Y.-W.; Tang, B. Z.; Liu, M. Sci. China Chem. 2021, 64, 2060.
|
[11] |
Luo, X.-Y.; Pan, M. Coord. Chem. Rev. 2022, 468, 214640.
|
[12] |
Zhong, Y.; Wu, Z.; Zhang, Y.; Dong, B.; Bai, X. InfoMat 2022, 5, e12392.
|
[13] |
Zhang, Y.; Yu, S.; Han, B.; Zhou, Y.; Zhang, X.; Gao, X.; Tang, Z. Matter 2022, 5, 837.
|
[14] |
Richardson, S., F. Inorg. Chem. 1980, 19, 2806.
|
[15] |
Lunkley, J. L.; Shirotani, D.; Yamanari, K.; Kaizaki, S.; Muller, G. J. Am. Chem. Soc. 2008, 130, 13814.
doi: 10.1021/ja805681w pmid: 18816117 |
[16] |
Kumar, J.; Marydasan, B.; Nakashima, T.; Kawai, T.; Yuasa, J. Chem. Commun. 2016, 52, 9885.
|
[17] |
Schnable, D.; Freedman, K.; Ayers, K. M.; Schley, N. D.; Kol, M.; Ung, G. Inorg. Chem. 2020, 59, 8498.
doi: 10.1021/acs.inorgchem.0c00946 pmid: 32469213 |
[18] |
Lunkley, J. L.; Shirotani, D.; Yamanari, K.; Kaizaki, S.; Muller, G. Inorg. Chem. 2011, 50, 12724.
doi: 10.1021/ic201851r pmid: 22074461 |
[19] |
Mukthar, N. F. M.; Schley, N. D.; Ung, G. J. Am. Chem. Soc. 2022, 144, 6148.
doi: 10.1021/jacs.2c01134 pmid: 35377146 |
[20] |
Arrico, L.; Di Bari, L.; Zinna, F. Chem. - Eur. J. 2021, 27, 2920.
|
[21] |
Dee, C.; Zinna, F.; Kitzmann, W. R.; Pescitelli, G.; Heinze, K.; Di Bari, L.; Seitz, M. Chem. Commun. 2019, 55, 13078.
|
[22] |
Piguet, C.; Bünzli, J.-C. G. In Handbook on the Physics and Chemistry of Rare Earths, Vol. 40, Elsevier, Amsterdam, The Netherlands, 2010, p. 301.
|
[23] |
Bunzli, J.-C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048.
|
[24] |
Zhou, W.-L.; Chen, Y.; Liu, Y. Acta Chim. Sinica 2020, 78, 1164. (in Chinese)
|
(周维磊, 陈湧, 刘育, 化学学报, 2020, 78, 1164.)
doi: 10.6023/A20100486 |
|
[25] |
Wang, J.; Li, X.; Chu, H.; He, J.; Chen, Z. Chin. J. Org. Chem. 2019, 39, 3399. (in Chinese)
|
(王军, 李小成, 初红涛, 何进军, 陈志娇, 有机化学, 2019, 39, 3399.)
doi: 10.6023/cjoc201904016 |
|
[26] |
Seitz, M.; Do, K.; Ingram, A. J.; Moore, E. G.; Muller, G.; Raymond, K. N. Inorg. Chem. 2009, 48, 8469.
|
[27] |
Zhu, Q.-Y.; Zhou, L.-P.; Cai, L.-X.; Li, X.-Z.; Zhou, J.; Sun, Q.-F. Chem. Commun. 2020, 56, 2861.
|
[28] |
Ning, Y.; Ke, X.-S.; Hu, J.-Y.; Liu, Y.-W.; Ma, F.; Sun, H.-L.; Zhang, J.-L. Inorg. Chem. 2017, 56, 1897.
|
[29] |
Zhang, M.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z.; Wei, J.; Gao, Y.; Zhou, S.; Li, X.; Chen, X. Angew. Chem., Int. Ed. 2019, 58, 9556.
|
[30] |
Wu, Z.; Ke, J.; Liu, Y.; Sun, P.; Hong, M. Acta Chim. Sinica 2022, 80, 542. (in Chinese)
|
(吴志芬, 柯建熙, 刘永升, 孙蓬明, 洪茂椿, 化学学报, 2022, 80, 542.)
doi: 10.6023/A21120571 |
|
[31] |
Li, X.-Z.; Tian, C.-B.; Sun, Q.-F. Chem. Rev. 2022, 122, 6374.
|
[32] |
Yan, B. Acc. Chem. Res. 2017, 50, 2789.
|
[33] |
Qin, Y.; Ge, Y.; Zhang, S.; Sun, H.; Jing, Y.; Li, Y.; Liu, W. RSC Adv. 2018, 8, 12641.
|
[34] |
Yang, D.; Wang, Y.; Liu, D.; Li, Z.; Li, H. J. Mater. Chem. C 2018, 6, 1944.
|
[35] |
Jia, J.-H.; Li, Q.-W.; Chen, Y.-C.; Liu, J.-L.; Tong, M.-L. Coord. Chem. Rev. 2019, 378, 365.
|
[36] |
Jiang, L.; Li, J.; Xia, D.; Gao, M.; Li, W.; Fu, D.-Y.; Zhao, S.; Li, G. ACS Appl. Mater. Inter. 2021, 13, 49462.
|
[37] |
Tang, X.; Chu, D.; Gong, W.; Cui, Y.; Liu, Y. Angew. Chem., Int. Ed. 2021, 60, 9099.
|
[38] |
Huang, W.; Chen, W.; Bai, Q.; Zhang, Z.; Feng, M.; Zheng, Z. Angew. Chem., Int. Ed. 2022, 61, e202205385.
|
[39] |
Zhang, P.; Luo, Q.-C.; Zhu, Z.; He, W.; Song, N.; Lv, J.; Wang, X.; Zhai, Q.-G.; Zheng, Y.-Z.; Tang, J. Angew. Chem., Int. Ed. 2023, 62, e202218540.
|
[40] |
Liu, S.; Liu, W.; Chen, C.; Sun, Y.; Bai, S.; Liu, W. Inorg. Chem. 2024, 63, 1725.
|
[41] |
Wang, Y.; Yan, J. Acta Chim. Sinica 2023, 81, 275. (in Chinese)
|
(汪阳, 阎敬灵, 化学学报, 2023, 81, 275.)
doi: 10.6023/A23010004 |
|
[42] |
Guan, Y.; Chang, K.; Sun, Q.; Xu, X. Chin. J. Org. Chem. 2022, 42, 1326. (in Chinese)
|
(管怡雯, 常克俭, 孙千林, 徐信, 有机化学, 2022, 42, 1326.)
doi: 10.6023/cjoc202112008 |
|
[43] |
Woods, M.; Kovacs, Z.; Zhang, S.; Sherry, A. D. Angew. Chem. Int. Ed. 2003, 42, 5889.
|
[44] |
Dickins, R. S.; Howard, J. A. K.; Lehmann, C. W.; Moloney, J.; Parker, D.; Peacock, R. D. Angew. Chem., Int. Ed. 1997, 36, 521.
|
[45] |
Dickins, R. S.; Howard, J. A. K.; Maupin, C. L.; Moloney, J. M.; Parker, D.; Riehl, J. P.; Siligardi, G.; Williams, J. A. G. Chem. Eur. J. 1999, 5, 1095.
|
[46] |
Dickins, R. S.; Howard, J. A. K.; Moloney, J. M.; Parker, D.; Peacock, R. D.; Siligardi, G. Chem. Commun. 1997, 1747.
|
[47] |
Poole, R. A.; Bobba, G.; Cann, M. J.; Frias, J.-C.; Parker, D.; Peacock, R. D. Org. Biomol. Chem. 2005, 3, 1013.
|
[48] |
Montgomery, C. P.; Parker, D.; Lamarque, L. Chem. Commun. 2007, 3841.
|
[49] |
Dai, L.; Jones, C. M.; Chan, W. T. K.; Pham, T. A.; Ling, X.; Gale, E. M.; Rotile, N. J.; Tai, W. C.-S.; Anderson, C. J.; Caravan, P.; Law, G.-L. Nat. Commun. 2018, 9, 857.
|
[50] |
Dai, L.; Lo, W.-S.; Coates, I. D.; Pal, R.; Law, G.-L. Inorg. Chem. 2016, 55, 9065.
|
[51] |
Dai, L.; Zhang, J.; Chen, Y.; Mackenzie, L. E.; Pal, R.; Law, G.-L. Inorg. Chem. 2019, 58, 12506.
|
[52] |
Petoud, S.; Cohen, S. M.; Bünzli, J.-C. G.; Raymond, K. N. J. Am. Chem. Soc. 2003, 125, 13324.
|
[53] |
Petoud, S.; Muller, G.; Moore, E. G.; Xu, J.; Sokolnicki, J.; Riehl, J. P.; Le, U. N.; Cohen, S. M.; Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 77.
|
[54] |
Seitz, M.; Moore, E. G.; Ingram, A. J.; Muller, G.; Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 15468.
|
[55] |
Tsubomura, T.; Yasaku, K.; Sato, T.; Morita, M. Inorg. Chem. 1992, 31, 447.
|
[56] |
Gregolinski, J.; Starynowicz, P.; Hua, K. T.; Lunkley, J. L.; Muller, G.; Lisowski, J. J. Am. Chem. Soc. 2008, 130, 17761.
|
[57] |
Qi, H.; Huo, P.; Han, B.; Zheng, J.; Wang, L.; Yan, W.; Guo, R.; Li, T.; Yu, K.; Liu, Z.; Bian, Z. Cell Rep. Phys. Sci. 2022, 3, 101107.
|
[58] |
Leonzio, M.; Melchior, A.; Faura, G.; Tolazzi, M.; Zinna, F.; Di Bari, L.; Piccinelli, F. Inorg. Chem. 2017, 56, 4413.
doi: 10.1021/acs.inorgchem.7b00430 pmid: 28388073 |
[59] |
Brittain, H. G.; Richardson, F. S. J. Am. Chem. Soc. 1976, 98, 5858.
|
[60] |
Di Pietro, S.; Di Bari, L. Inorg. Chem. 2012, 51, 12007.
|
[61] |
Zinna, F.; Resta, C.; Abbate, S.; Castiglioni, E.; Longhi, G.; Mineo, P.; Di Bari, L. Chem. Commun. 2015, 51, 11903.
|
[62] |
Muller, G.; Schmidt, B.; Jiricek, J.; Hopfgartner, G.; Riehl, J. P.; Bünzli, J.-C. G.; Piguet, C. J. Chem. Soc., Dalton Trans. 2001, 2655.
|
[63] |
Bonsall, S. D.; Houcheime, M.; Straus, D. A.; Muller, G. Chem. Commun. 2007, 3676.
|
[64] |
Lincheneau, C.; Destribats, C.; Barry, D. E.; Kitchen, J. A.; Peacock, R. D.; Gunnlaugsson, T. Dalton Trans. 2011, 40, 12056.
|
[65] |
Arrico, L.; Benetti, C.; Di Bari, L. ChemPhotoChem 2021, 5, 815.
|
[66] |
Matsumoto, K.; Suzuki, K.; Tsukuda, T.; Tsubomura, T. Inorg. Chem. 2010, 49, 4717.
doi: 10.1021/ic901743q pmid: 20438091 |
[67] |
Muller, G.; Bünzli, J.-C. G.; Riehl, J. P.; Suhr, D.; Zelewsky, A.; Mürner, H. Chem. Commun. 2002, 1522.
|
[68] |
Cotter, D.; Dodder, S.; Klimkowski, V. J.; Hopkins, T. A. Chirality 2019, 31, 301.
|
[69] |
Walton, J. W.; Bari, L. D.; Parker, D.; Pescitelli, G.; Puschmann, H.; Yufit, D. S. Chem. Commun. 2011, 47, 12289.
|
[70] |
Frawley, A. T.; Pal, R.; Parker, D. Chem. Commun. 2016, 52, 13349.
|
[71] |
Homberg, A.; Navazio, F.; Le Tellier, A.; Zinna, F.; Fürstenberg, A.; Besnard, C.; Di Bari, L.; Lacour, J. Dalton Trans. 2022, 51, 16479.
|
[72] |
Deng, M.; Schley, N. D.; Ung, G. Chem. Commun. 2020, 56, 14813.
|
[73] |
Willis, B.-A. N.; Schnable, D.; Schley, N. D.; Ung, G. J. Am. Chem. Soc. 2022, 144, 22421.
|
[74] |
Leonard, J. P.; Jensen, P.; McCabe, T.; O'Brien, J. E.; Peacock, R. D.; Kruger, P. E.; Gunnlaugsson, T. J. Am. Chem. Soc. 2007, 129, 10986.
pmid: 17696537 |
[75] |
Starck, M.; MacKenzie, L. E.; Batsanov, A. S.; Parker, D.; Pal, R. Chem. Commun. 2019, 55, 14115.
|
[76] |
Muller, G.; Bünzli, J.-C. G.; Schenk, K. J.; Piguet, C.; Hopfgartner, G. Inorg. Chem. 2001, 40, 2642.
pmid: 11375674 |
[77] |
Liu, B.; Chen, P. Acta Chim. Sinica 2022, 80, 929. (in Chinese)
|
(刘斌, 陈磅宽, 化学学报, 2022, 80, 929.)
doi: 10.6023/A22030122 |
|
[78] |
Stomeo, F.; Lincheneau, C.; Leonard, J. P.; O’Brien, J. E.; Peacock, R. D.; McCoy, C. P.; Gunnlaugsson, T. J. Am. Chem. Soc. 2009, 131, 9636.
|
[79] |
Zhou, Y.; Yao, Y.; Cheng, Z.; Gao, T.; Li, H.; Yan, P. Inorg. Chem. 2020, 59, 12850.
|
[80] |
Bozoklu, G.; Gateau, C.; Imbert, D.; Pécaut, J.; Robeyns, K.; Filinchuk, Y.; Memon, F.; Muller, G.; Mazzanti, M. J. Am. Chem. Soc. 2012, 134, 8372.
doi: 10.1021/ja3020814 pmid: 22548280 |
[81] |
Harada, T.; Hasegawa, Y.; Nakano, Y.; Fujiki, M.; Naito, M.; Wada, T.; Inoue, Y.; Kawai, T. J. Alloy. Compd. 2009, 488, 599.
|
[82] |
Harada, T.; Nakano, Y.; Fujiki, M.; Naito, M.; Kawai, T.; Hasegawa, Y. Inorg. Chem. 2009, 48, 11242.
|
[83] |
Kono, Y.; Hara, N.; Shizuma, M.; Fujiki, M.; Imai, Y. Dalton Trans. 2017, 46, 5170.
|
[84] |
Taniguchi, A.; Hara, N.; Shizuma, M.; Tajima, N.; Fujiki, M.; Imai, Y. Photoch. Photobio. Sci. 2019, 18, 2859.
|
[85] |
Harada, T.; Tsumatori, H.; Nishiyama, K.; Yuasa, J.; Hasegawa, Y.; Kawai, T. Inorg. Chem. 2012, 51, 6476.
|
[86] |
Okayasu, Y.; Yuasa, J. Molecul. Syst. Des. Eng. 2018, 3, 66.
|
[87] |
Górecki, M.; Carpita, L.; Arrico, L.; Zinna, F.; Di Bari, L. Dalton Trans. 2018, 47, 7166.
doi: 10.1039/c8dt00865e pmid: 29774898 |
[88] |
Zinna, F.; Arrico, L.; Di Bari, L. Chem. Commun. 2019, 55, 6607.
|
[89] |
Abhervé, A.; Mastropasqua Talamo, M.; Vanthuyne, N.; Zinna, F.; Di Bari, L.; Grasser, M.; Le Guennic, B.; Avarvari, N. Eur. J. Inorg. Chem. 2022, 2022, e202200010.
|
[90] |
Dhbaibi, K.; Grasser, M.; Douib, H.; Dorcet, V.; Cador, O.; Vanthuyne, N.; Riobé, F.; Maury, O.; Guy, S.; Bensalah-Ledoux, A.; Baguenard, B.; Rikken, G. L. J. A.; Train, C.; Le Guennic, B.; Atzori, M.; Pointillart, F.; Crassous, J. Angew. Chem., Int. Ed. 2023, 62, e202215558.
|
[91] |
Cavalli, E.; Nardon, C.; Willis, O. G.; Zinna, F.; Di Bari, L.; Mizzoni, S.; Ruggieri, S.; Gaglio, S. C.; Perduca, M.; Zaccone, C.; Romeo, A.; Piccinelli, F. Chem. - Eur. J. 2022, 28, e202200574.
|
[92] |
Ruggieri, S.; Mizzoni, S.; Nardon, C.; Cavalli, E.; Sissa, C.; Anselmi, M.; Cozzi, P. G.; Gualandi, A.; Sanadar, M.; Melchior, A.; Zinna, F.; Willis, O. G.; Di Bari, L.; Piccinelli, F. Inorg. Chem. 2023, 62, 8812.
doi: 10.1021/acs.inorgchem.3c00196 pmid: 37262334 |
[93] |
Leonzio, M.; Bettinelli, M.; Arrico, L.; Monari, M.; Di Bari, L.; Piccinelli, F. Inorg. Chem. 2018, 57, 10257.
doi: 10.1021/acs.inorgchem.8b01480 pmid: 30080030 |
[94] |
Yin, S.; Li, X.; Wang, H.; Li, J.; Huang, W.; Gao, T.; Yan, P.; Zhou, Y.; Li, H. CrystEngComm 2023, 25, 1541.
|
[95] |
Brittain, H.; Richardson, F. J. Am. Chem. Soc. 1977, 99, 65.
|
[96] |
Yao, M.-X.; Cai, L.-Z.; Deng, X.-W.; Zhang, W.; Liu, S.-J.; Cai, X.-M. New J. Chem. 2018, 42, 17652.
|
[97] |
Zheng, X.-Y.; Xie, J.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. Coord. Chem. Rev. 2019, 378, 222.
|
[98] |
Sun, Q.-F.; Li, X.-Z. Chin. J. Lumin. 2020, 41, 770. (in Chinese)
|
(孙庆福, 李小贞, 发光学报, 2020, 41, 770.)
|
|
[99] |
Song, L.; Zhou, Y.; Gao, T.; Yan, P.; Li, H. Acta Chim. Sinica 2021, 79, 1042. (in Chinese)
|
(宋龙飞, 周妍妍, 高婷, 闫鹏飞, 李洪峰, 化学学报, 2021, 79, 1042.)
doi: 10.6023/A21040185 |
|
[100] |
Yan, L.-L.; Tan, C.-H.; Zhang, G.-L.; Zhou, L.-P.; Bünzli, J.-C.; Sun, Q.-F. J. Am. Chem. Soc. 2015, 137, 8550.
|
[101] |
Li, X.-Z.; Zhou, L.-P.; Yan, L.-L.; Yuan, D.-Q.; Lin, C.-S.; Sun, Q.-F. J. Am. Chem. Soc. 2017, 139, 8237.
|
[102] |
Cantuel, M.; Bernardinelli, G.; Muller, G.; Riehl, J. P.; Piguet, C. Inorg. Chem. 2004, 43, 1840.
|
[103] |
Zhou, Y.; Li, H.; Zhu, T.; Gao, T.; Yan, P. J. Am. Chem. Soc. 2019, 141, 19634.
|
[104] |
Hu, S.-J.; Guo, X.-Q.; Zhou, L.-P.; Yan, D.-N.; Cheng, P.-M.; Cai, L.-X.; Li, X.-Z.; Sun, Q.-F. J. Am. Chem. Soc. 2022, 144, 4244.
|
[105] |
Lincheneau, C.; Peacock, R. D.; Gunnlaugsson, T. Chem. - Asian J. 2010, 5, 500.
|
[106] |
Kotova, O.; Comby, S.; Pandurangan, K.; Stomeo, F.; O'Brien, J. E.; Feeney, M.; Peacock, R. D.; McCoy, C. P.; Gunnlaugsson, T. Dalton Trans. 2018, 47, 12308.
doi: 10.1039/c8dt02753f pmid: 30113616 |
[107] |
Wang, Z.; Zhou, L.-P.; Zhao, T.-H.; Cai, L.-X.; Guo, X.-Q.; Duan, P.-F.; Sun, Q.-F. Inorg. Chem. 2018, 57, 7982.
|
[108] |
Yeung, C.-T.; Yim, K.-H.; Wong, H.-Y.; Pal, R.; Lo, W.-S.; Yan, S.-C.; Yee-Man Wong, M.; Yufit, D.; Smiles, D. E.; McCormick, L. J.; Teat, S. J.; Shuh, D. K.; Wong, W.-T.; Law, G.-L. Nat. Commun. 2017, 8, 1128.
|
[109] |
Han, G.; Zhou, Y.; Yao, Y.; Cheng, Z.; Gao, T.; Li, H.; Yan, P. Dalton Trans. 2020, 49, 3312.
|
[110] |
Tsurui, M.; Kitagawa, Y.; Shoji, S.; Fushimi, K.; Hasegawa, Y. Dalton Trans. 2023, 52, 796.
|
[111] |
Wang, C.-F.; Shi, C.; Zheng, A.; Wu, Y.; Ye, L.; Wang, N.; Ye, H.-Y.; Ju, M.-G.; Duan, P.; Wang, J.; Zhang, Y. Mater. Horiz. 2022, 9, 2450.
|
[112] |
Niu, X.; Zeng, Z.; Wang, Z.; Lu, H.; Sun, B.; Zhang, H.-L.; Chen, Y.; Du, Y.; Long, G. Sci. China Chem. 2024, DOI: 10.1007/s11426-024-1946-7.
|
[113] |
Mamula, O.; Lama, M.; Telfer, S. G.; Nakamura, A.; Kuroda, R.; Stoeckli-Evans, H.; Scopelitti, R. Angew. Chem., Int. Ed. 2005, 44, 2527.
|
[114] |
Bing, T. Y.; Kawai, T.; Yuasa, J. J. Am. Chem. Soc. 2018, 140, 3683.
doi: 10.1021/jacs.7b12663 pmid: 29433303 |
[115] |
Bi, S.; Zhou, Y.; Yao, Y.; Cheng, Z.; Gao, T.; Yan, P.; Li, H. Aust. J. Chem 2021, 74, 145.
|
[116] |
Yao, Z.; Zhou, Y.; Gao, T.; Yan, P.; Li, H. RSC Adv. 2021, 11, 10524.
|
[117] |
Liu, D.; Zhou, Y.; Zhang, Y.; Li, H.; Chen, P.; Sun, W.; Gao, T.; Yan, P. Inorg. Chem. 2018, 57, 8332.
|
[118] |
Wang, Y.; Zhou, Y.; Yao, Z.; Huang, W.; Gao, T.; Yan, P.; Li, H. Dalton Trans. 2022, 51, 10973.
|
[119] |
Hashimoto, Y.; Nakashima, T.; Yamada, M.; Yuasa, J.; Rapenne, G.; Kawai, T. J. Phys. Chem. Lett. 2018, 9, 2151.
doi: 10.1021/acs.jpclett.8b00690 pmid: 29641885 |
[120] |
Hasegawa, Y.; Miura, Y.; Kitagawa, Y.; Wada, S.; Nakanishi, T.; Fushimi, K.; Seki, T.; Ito, H.; Iwasa, T.; Taketsugu, T.; Gon, M.; Tanaka, K.; Chujo, Y.; Hattori, S.; Karasawa, M.; Ishii, K. Chem. Commun. 2018, 54, 10695.
|
[121] |
Islam, M. J.; Kitagawa, Y.; Tsurui, M.; Hasegawa, Y. Dalton Trans. 2021, 50, 5433.
|
[122] |
Kitchen, J. A.; Barry, D. E.; Mercs, L.; Albrecht, M.; Peacock, R. D.; Gunnlaugsson, T. Angew. Chem., Int. Ed. 2012, 51, 704.
|
[123] |
Barry, D. E.; Kitchen, J. A.; Mercs, L.; Peacock, R. D.; Albrecht, M.; Gunnlaugsson, T. Dalton Trans. 2019, 48, 11317.
doi: 10.1039/c9dt02003a pmid: 31271402 |
[124] |
Liu, X. K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R. H.; Gao, F. Nat. Mater. 2021, 20, 10.
|
[125] |
Zhu, C.; Jin, J.; Wang, Z.; Xu, Z.; Folgueras, M. C.; Jiang, Y.; Uzundal, C. B.; Le, H. K. D.; Wang, F.; Zheng, X.; Yang, P. Science 2024, 383, 86.
|
[126] |
Gao, Y.; Pan, Y.; Zhou, F.; Niu, G.; Yan, C. J. Mater. Chem. A 2021, 9, 11931.
|
[127] |
Willis, O. G.; Petri, F.; Pescitelli, G.; Pucci, A.; Cavalli, E.; Mandoli, A.; Zinna, F.; Di Bari, L. Angew. Chem., Int. Ed. 2022, 61, e202208326.
|
[128] |
Willis, O. G.; Petri, F.; De Rosa, D. F.; Mandoli, A.; Pal, R.; Zinna, F.; Di Bari, L. J. Am. Chem. Soc. 2023, 145, 25170.
|
[129] |
Yuasa, J.; Ohno, T.; Miyata, K.; Tsumatori, H.; Hasegawa, Y.; Kawai, T. J. Am. Chem. Soc. 2011, 133, 9892.
|
[130] |
Hu, S.-J.; Guo, X.-Q.; Zhou, L.-P.; Cai, L.-X.; Tian, C.-B.; Sun, Q.-F. Chin. J. Chem. 2023, 41, 797.
|
[131] |
Goto, T.; Okazaki, Y.; Ueki, M.; Kuwahara, Y.; Takafuji, M.; Oda, R.; Ihara, H. Angew. Chem., Int. Ed. 2017, 56, 2989.
|
[132] |
Han, J.; You, J.; Li, X.; Duan, P.; Liu, M. Adv. Mater. 2017, 29, 1606503.
|
[133] |
Huo, S.; Duan, P.; Jiao, T.; Peng, Q.; Liu, M. Angew. Chem., Int. Ed. 2017, 56, 12174.
|
[134] |
Zhang, C.; Li, Z.-S.; Dong, X.-Y.; Niu, Y.-Y.; Zang, S.-Q. Adv. Mater. 2022, 34, 2109496.
|
[135] |
Sugimoto, M.; Liu, X.-L.; Tsunega, S.; Nakajima, E.; Abe, S.; Nakashima, T.; Kawai, T.; Jin, R.-H. Chem. - Eur. J. 2018, 24, 6519.
|
[136] |
Maupin, C. L.; Parker, D.; Williams, J. A. G.; Riehl, J. P. J. Am. Chem. Soc. 1998, 120, 10563.
|
[137] |
Maupin, C. L.; Dickins, R. S.; Govenlock, L. G.; Mathieu, C. E.; Parker, D.; Williams, J. A. G.; Riehl, J. P. J. Phys. Chem. A 2000, 104, 6709.
|
[138] |
Willis, O. G.; Zinna, F.; Pescitelli, G.; Micheletti, C.; Di Bari, L. Dalton Trans. 2022, 51, 518.
|
[139] |
Adewuyi, J. A.; Ung, G. J. Am. Chem. Soc. 2024, 146, 7097.
|
[140] |
Riehl, J. P.; Richardson, F. S. Chem. Rev. 1986, 86, 1.
|
[141] |
Adewuyi, J. A.; Schley, N. D.; Ung, G. Chem. Eur. J. 2023, 29, e202300800.
|
[142] |
Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73.
doi: 10.1126/science.2321027 pmid: 2321027 |
[143] |
Picot, A.; D'Aléo, A.; Baldeck, P. L.; Grichine, A.; Duperray, A.; Andraud, C.; Maury, O. J. Am. Chem. Soc. 2008, 130, 1532.
|
[144] |
Mizzoni, S.; Ruggieri, S.; Sickinger, A.; Riobé, F.; Guy, L.; Roux, M.; Micouin, G.; Banyasz, A.; Maury, O.; Baguenard, B.; Bensalah-Ledoux, A.; Guy, S.; Grichine, A.; Nguyen, X.-N.; Cimarelli, A.; Sanadar, M.; Melchior, A.; Piccinelli, F. J. Mater. Chem. C 2023, 11, 4188.
|
[145] |
Aspinall, H. C. Chem. Rev. 2002, 102, 1807.
pmid: 12059255 |
[146] |
Brittain, H. G.; Desreux, J. F. Inorg. Chem. 1984, 23, 4459.
|
[147] |
Cai, L.-X.; Yan, L.-L.; Li, S.-C.; Zhou, L.-P.; Sun, Q.-F. Dalton Trans. 2018, 47, 14204.
doi: 10.1039/c8dt01808a pmid: 29957816 |
[148] |
Zhang, J.; Dai, L.; Webster, A. M.; Chan, W. T. K.; Mackenzie, L. E.; Pal, R.; Cobb, S. L.; Law, G.-L. Angew. Chem., Int. Ed. 2021, 60, 1004.
|
[149] |
Zinna, F.; Giovanella, U.; Di Bari, L. Adv. Mater. 2015, 27, 1791.
doi: 10.1002/adma.201404891 |
[150] |
Li, W.; Zhou, Y.; Gao, T.; Li, J.; Yin, S.; Huang, W.; Li, Y.; Ma, Q.; Yao, Z.; Yan, P.; Li, H. ACS Appl. Mater. Inter. 2022, 14, 55979.
|
[151] |
Kitagawa, Y.; Wada, S.; Islam, M. D. J.; Saita, K.; Gon, M.; Fushimi, K.; Tanaka, K.; Maeda, S.; Hasegawa, Y. Commun. Chem. 2020, 3, 119.
doi: 10.1038/s42004-020-00366-1 pmid: 36703364 |
[152] |
Yeung, C.-T.; Chan, W. T. K.; Yan, S.-C.; Yu, K.-L.; Yim, K.-H.; Wong, W.-T.; Law, G.-L. Chem. Commun. 2015, 51, 592.
|
[153] |
Vonci, M.; Mason, K.; Suturina, E. A.; Frawley, A. T.; Worswick, S. G.; Kuprov, I.; Parker, D.; McInnes, E. J. L.; Chilton, N. F. J. Am. Chem. Soc. 2017, 139, 14166.
|
[154] |
Fradgley, J. D.; Frawley, A. T.; Pal, R.; Parker, D. Phys. Chem. Chem. Phys. 2021, 23, 11479.
doi: 10.1039/d1cp01686e pmid: 33959741 |
[155] |
Wada, S.; Kitagawa, Y.; Nakanishi, T.; Gon, M.; Tanaka, K.; Fushimi, K.; Chujo, Y.; Hasegawa, Y. Sci. Rep. 2018, 8, 16395.
|
[156] |
Arrico, L.; De Rosa, C.; Di Bari, L.; Melchior, A.; Piccinelli, F. Inorg. Chem. 2020, 59, 5050.
|
[157] |
Okayasu, Y.; Wakabayashi, K.; Yuasa, J. Inorg. Chem. 2022, 61, 15108.
|
[158] |
Liu, M.; Zhang, L.; Wang, T. Chem. Rev. 2015, 115, 7304.
|
[159] |
Wang, Y.; Gong, J.; Wang, X.; Li, W.-J.; Wang, X.-Q.; He, X.; Wang, W.; Yang, H.-B. Angew. Chem., Int. Ed. 2022, 61, e202210542.
|
[160] |
Liu, L.; Yang, Y.; Wei, Z. Acta Chim. Sinica 2022, 80, 970. (in Chinese)
|
(刘丽萱, 杨扬, 魏志祥, 化学学报, 2022, 80, 970.)
doi: 10.6023/A22030123 |
|
[161] |
Zinna, F.; Pasini, M.; Galeotti, F.; Botta, C.; Di Bari, L.; Giovanella, U. Adv. Funct. Mater. 2017, 27, 1603719.
|
[162] |
Zinna, F.; Arrico, L.; Funaioli, T.; Di Bari, L.; Pasini, M.; Botta, C.; Giovanella, U. J. Mater. Chem. C 2022, 10, 463.
|
[163] |
Zinna, F.; Pasini, M.; Cabras, M.; Scavia, G.; Botta, C.; Di Bari, L.; Giovanella, U. Chirality 2023, 35, 270.
|
[164] |
Shuvaev, S.; Suturina, E. A.; Mason, K.; Parker, D. Chem. Sci. 2018, 9, 2996.
doi: 10.1039/c8sc00482j pmid: 29732083 |
[165] |
Montgomery, C. P.; New, E. J.; Parker, D.; Peacock, R. D. Chem. Commun. 2008, 4261.
|
[166] |
Moore, E. G.; Samuel, A. P.; Raymond, K. N. Acc. Chem. Res. 2009, 42, 542.
|
[167] |
Brichtová, E.; Hudecová, J.; Vršková, N.; Šebestík, J.; Bouř, P.; Wu, T. Chem. Eur. J. 2018, 24, 8664.
|
[168] |
Brittain, H. G. Inorg. Chem. 1981, 20, 3007.
|
[169] |
Muller, G.; Riehl, J. P. J. Fluoresc. 2005, 15, 553.
|
[170] |
Iwamura, M.; Kimura, Y.; Miyamoto, R.; Nozaki, K. Inorg. Chem. 2012, 51, 4094.
|
[171] |
Okutani, K.; Nozaki, K.; Iwamura, M. Inorg. Chem. 2014, 53, 5527.
|
[172] |
Iwamura, M.; Fujii, M.; Yamada, A.; Koike, H.; Nozaki, K. Chem. - Asian J. 2019, 14, 561.
|
[173] |
Uchida, T.; Nozaki, K.; Iwamura, M. Chem. - Asian J. 2016, 11, 2415.
|
[174] |
Carr, R.; Di Bari, L.; Lo Piano, S.; Parker, D.; Peacock, R. D.; Sanderson, J. M. Dalton Trans. 2012, 41, 13154.
|
[175] |
Neil, E. R.; Fox, M. A.; Pal, R.; Parker, D. Dalton Trans. 2016, 45, 8355.
|
[176] |
Wu, T.; Průša, J.; Kessler, J.; Dračínský, M.; Valenta, J.; Bouř, P. Anal. Chem. 2016, 88, 8878.
|
[1] | 郑灏宁, 刘金宇. 有机催化吲哚碳环官能团化研究进展[J]. 化学学报, 2024, 82(6): 641-657. |
[2] | 刘雪朋, 李博桐, 韩明远, 张先付, 陈建林, 戴松元. 自组装单分子空穴传输层在反式钙钛矿太阳电池的研究进展[J]. 化学学报, 2024, 82(3): 348-366. |
[3] | 王敏, 陈帮塘, 陈桥林, 王俊, 陈名钊, 蒋志龙, 王平山. 6,6″-二(2,6-二甲氧基苯)-三联吡啶及其衍生物金属配位自组装的研究进展[J]. 化学学报, 2024, 82(3): 336-347. |
[4] | 高炜洋, 邓伟超, 高扬, 梁仁校, 贾义霞. 吲哚分子间不对称去芳构化氧化Heck反应[J]. 化学学报, 2024, 82(1): 1-4. |
[5] | 胡立伟, 刘宪虎, 刘春太, 宋延林, 李明珠. 光子晶体结构色材料的自组装制备与应用★[J]. 化学学报, 2023, 81(7): 809-819. |
[6] | 陈慧敏, 王龙, 张盼, 白西林, 周国君. 高效率Tb3+单掺绿色荧光粉的光致/应力发光研究[J]. 化学学报, 2023, 81(7): 771-776. |
[7] | 李兰英, 陶晴, 闻艳丽, 王乐乐, 郭瑞妍, 刘刚, 左小磊. 多聚腺嘌呤DNA探针及其生物传感应用★[J]. 化学学报, 2023, 81(6): 681-690. |
[8] | 蔡新红, 陈建中, 张万斌. 镍催化不对称氢化构建手性C—X键的研究进展★[J]. 化学学报, 2023, 81(6): 646-656. |
[9] | 王银凤, 李猛, 陈传峰. 基于手性三蝶烯的红光热激活延迟荧光聚合物及其有机发光二极管研究★[J]. 化学学报, 2023, 81(6): 588-594. |
[10] | 汪阳, 阎敬灵. 不同配体的稀土金属配合物在烯烃聚合领域的研究进展[J]. 化学学报, 2023, 81(3): 275-288. |
[11] | 苏东芮, 任小康, 于沄淏, 赵鲁阳, 王天宇, 闫学海. 酪氨酸衍生物调控酶催化路径可控合成功能黑色素★[J]. 化学学报, 2023, 81(11): 1486-1492. |
[12] | 钟越文, 钱希宁, 马超, 刘凯, 张洪杰. 稀土生物制造及其高附加值材料应用★[J]. 化学学报, 2023, 81(11): 1624-1632. |
[13] | 韩叶强, 史炳锋. 钯(II)催化不对称C(sp3)—H键官能团化研究进展★[J]. 化学学报, 2023, 81(11): 1522-1540. |
[14] | 高杨, 张学鑫, 余金生, 周剑. α-手性三级叠氮化合物的不对称催化合成新进展★[J]. 化学学报, 2023, 81(11): 1590-1608. |
[15] | 溥旭, 李泽娟, 石隽秋, 朱云卿, 杜建忠. 器官靶向的聚合物核酸载体研究进展★[J]. 化学学报, 2023, 81(10): 1438-1446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||