化学学报 ›› 2024, Vol. 82 ›› Issue (6): 707-730.DOI: 10.6023/A24030071 上一篇    

综述

稀土圆偏振发光材料研究进展

李小贞a,b, 孙庆福b,*()   

  1. a 福建师范大学 海峡柔性电子实验室 福州 350117
    b 中国科学院福建物质结构研究所 结构化学国家重点实验室 福州 350002
  • 投稿日期:2024-03-06 发布日期:2024-04-28
  • 作者简介:

    李小贞, 2018年于中国科学院福建物质结构研究所获得理学博士学位, 2018~2021年在中国科学院福建物质结构研究所从事博士后研究, 2021年~2022年在中国科学院福建物质结构研究所担任副研究员, 2022年入职福建师范大学. 主要研究方向为超分子自组装和手性稀土功能材料.

    孙庆福, 中国科学院福建物质结构研究所研究员, 课题组长. 2011年获东京大学应用化学专业博士学位, 留日期间曾获日本学术振兴会青年科学家(JSPS-DC及JSPS-PD)项目及国家优秀自费留学生奖学金资助. 2012年赴美国能源部资助下的劳伦斯伯克利国家实验室及加州大学伯克利分校进行博士后研究. 2013年以国家高层次人才引进到中国科学院福建物质结构研究所独立开展研究工作. 主要研究兴趣包括大环和笼状超分子配合物的设计合成、发光及磁性调控、主客体性质及仿酶催化等, 研究成果发表在Science, Nat. Chem., Nat. Commun., J. Am. Chem. Soc.等知名期刊. 曾获得国家自然科学基金委杰出青年基金、中组部“海外高层次人才计划”、中科院“人才引进计划”、福建省“创新创业人才计划”等人才项目, 获得中国化学会青年化学奖、中科院优秀导师奖、福建省青年五四奖章标兵、福建省青年科技奖等荣誉.
  • 基金资助:
    福建省自然科学基金(2021J02016); 福建省自然科学基金(2023J01528); 国家自然科学基金(21901245)

Research Progress of Rare Earth-Based Circularly Polarized Luminescent Materials

Xiaozhen Lia,b, Qingfu Sunb,*()   

  1. a Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
  • Received:2024-03-06 Published:2024-04-28
  • Contact: * E-mail: qfsun@fjirsm.ac.cn
  • Supported by:
    Natural Science Foundation of Fujian Province(2021J02016); Natural Science Foundation of Fujian Province(2023J01528); National Natural Science Foundation of China(21901245)

圆偏振光(CPL)是一种特殊而重要的光, 在三维显示、有机光电器件、安全油墨、生物和化学探针等方面具有广泛应用前景. 发光不对称因子和发光量子产率是衡量圆偏振发光性能的重要指标. 受磁跃迁偶极矩较小的影响, 大部分手性材料的发光不对称因子较小. 稀土金属离子优异的光、电性能和部分磁偶极跃迁允许特性使手性稀土化合物被认为是理想的具有高发光不对称因子和高发光量子产率的圆偏振发光材料. 基于此, 本综述归纳总结了手性稀土材料在可见光、近红外光和双光子激发圆偏振发光材料等方面的研究进展, 探讨了配体、溶剂、阴离子、多级自组装作用和外界刺激等因素对圆偏振发光性能的调控规律, 总结了手性稀土圆偏振发光材料在圆偏振有机发光二极管、生物传感、检测、防伪和成像等方面的应用, 以及该领域目前面临的主要机遇和挑战.

关键词: 稀土, 手性, 圆偏振发光, 自组装, 发光不对称因子

As a special and important light, circularly polarized light (CPL) has shown unprecedented potentials in the applications of advanced three-dimensional (3D) displays, organic optoelectronic devices, security inks, and biological or chemical probes. Luminescence dissymmetry factor (glum) and quantum yields (Φ) are important factors that adopted to evaluate the magnitudes of CPL signals. Most chiral luminescent materials have low glum values due to the low magnetic-dipole transition moments. Attributing to the unique photophysical, optoelectronic properties and magnetic-dipole allowed transitions, chiral rare earth materials are promising candidates for circularly polarized luminescent materials possessing both large glum and high Φ. Herein, a comprehensive and up-to-date overview of the research progress of rare earth-based circularly polarized luminescent materials is presented, which contains: (i) the developments of visible light, near-infrared light (NIR) and two-photon circularly polarized luminescence; (ii) the effects of ligands, solvents, anions, supermolecular self-assembly, external stimulus on the circularly polarized luminescence performances; (iii) the applications in circularly polarized-organic light-emitting diodes (CP-OLED), biosensing, detection, and security devices. Finally, current challenges and future opportunities are discussed.

Key words: rare earth, chirality, circularly polarized luminescence, self-assembly, luminescence dissymmetry factor