化学学报 ›› 2024, Vol. 82 ›› Issue (8): 849-855.DOI: 10.6023/A24040141 上一篇    下一篇

研究论文

高杨氏模量细菌纤维素隔膜有效抑制锂枝晶

苑志祥a,b,c,d, 张雅岚b,c,d, 张浩b,c,d, 张仕杰b,c,d, 王朵b,c,d, 张波涛a,*(), 张建军b,c,d,*(), 崔光磊b,c,d,*()   

  1. a 青岛大学 化学化工学院 青岛 266071
    b 中国科学院青岛生物能源与过程研究所 青岛储能产业技术研究院 青岛 266101
    c 山东能源研究院 青岛 266101
    d 青岛新能源山东省实验室 青岛 266101
  • 投稿日期:2024-04-22 发布日期:2024-06-26
  • 基金资助:
    山东省重大科技创新工程(2022CXGC020301); 国家自然科学基金面上项目(52073298); 国家自然科学基金面上项目(52273221); 中国科学院青年创新促进会(2020217); 青岛新能源山东省实验室开放课题(QNESL OP202312)

Bacterial Cellulose Separator with High Young's Modulus Effectively Inhibits Lithium Dendrites

Zhixiang Yuana,b,c,d, Yalan Zhangb,c,d, Hao Zhangb,c,d, Shijie Zhangb,c,d, duo Wangb,c,d, Botao Zhanga,*(), Jianjun Zhangb,c,d,*(), Guanglei Cuib,c,d,*()   

  1. a School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071
    b Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101
    c Shandong Energy Institute, Qingdao 266101
    d Qingdao New Energy Shandong Laboratory, Qingdao 266101
  • Received:2024-04-22 Published:2024-06-26
  • Contact: * E-mail: botaozhang@qdu.edu.cn; zhang_jj@qibebt.ac.cn; cuigl@qibebt.ac.cn; Tel.: 0532-80662746; Fax: 0532-80662744
  • Supported by:
    Key Scientific and Technological Innovation Project of Shandong(2022CXGC020301); National Natural Science Foundation of China(52073298); National Natural Science Foundation of China(52273221); Youth Innovation Promotion Association of CAS(2020217); Qingdao New Energy Shandong Laboratory Open Project(QNESL OP202312)

隔膜是锂电池的重要组成部分, 其作用尤为重要. 然而, 现有聚烯烃基隔膜对电解液润湿性差, 而且尺寸热稳定性较差, 尤其是其杨氏模量较低无法有效抑制锂枝晶的生长, 严重限制了其在锂金属电池中的应用. 为了解决这些问题, 设计制备出一种具有高杨氏模量、尺寸热稳定性优异、对电解液浸润性好的细菌纤维素隔膜. 实验结果表明, 该细菌纤维素隔膜具有高拉伸强度(144 MPa)、高杨氏模量(8.1 GPa)和优异的尺寸热稳定性(≥300 ℃). 使用该细菌纤维素隔膜并匹配传统有机碳酸酯类电解液的Li/Li对称电池, 可以在0.52 mA•cm−2的电流密度以及1.56 mAh•cm−2的面容量下实现4000 h的稳定循环. 如此优异的性能归因于该隔膜具有的高杨氏模量以及其可以促进锂金属电极表面形成稳定的固态电解质界面层. 可以预见, 该细菌纤维素隔膜是一种非常有前途的可适用于高能量密度锂金属电池的新型隔膜.

关键词: 细菌纤维素隔膜, 高杨氏模量, 抑制锂枝晶, 锂金属电池, 界面化学

Separators play a critical role in isolating anodes and cathodes for lithium battery. However, commercialized polyolefin-based separators often suffered from poor electrolyte wettability, inferior dimentionally thermal stability, especially the low Young's modulus of polyolefin-based separators cannot effectively inhibit the growth of lithium dendrites, which limits their large-scale practical application in lithium metal batteries. Therefore, a novel separator with high Young's modulus which can be applied to lithium metal batteries is urgently needed. Bacterial cellulose is a porous, nanoscale biopolymer, which is synthesized mainly by micro-organisms such as bacillus xylosus. Compared with plant-derived cellulose, bacterial cellulose exhibits high crystallinity, high thermal stability, high electrolyte absorption, high porosity, and excellent mechanical strength. Considering the above advantages, bacterial cellulose-based bacterial cellulose separators have the potential to be effectively suited in lithium metal batteries. Herein, we demonstrate a novel kind of bacterial cellulose separator. Firstly, the structure of the prepared bacterial cellulose separator is characterized using scanning electron microscopy (SEM), atomic force microspocy (AFM) and X-ray diffraction (XRD), which shows a three-dimensional interpenetrating network structure, suggesting that it is favourable for achieving wetting of the electrolyte and providing more ionic conduction pathways. In addition, this bacterial cellulose separator with high Young's modulus, excellent dimentionally thermal stability and outstanding electrolyte wettability was prepared by a sample process. It is demonstrated that the resultant separator exhibits excellent mechanical strength (144 MPa), high Young's modulus (8.1 GPa) and superior thermal dimentionally stability (≥300 ℃). Meanwhile, Li/Li cells using this bacterial cellulose separator and conventional organic carbonate-based electrolyte can achieve a steady lithium plating/stripping behavior over 4000 h at a current rate of 0.52 mA•cm−2 and 1.56 mAh•cm−2. Such improved reliability is chiefly attributed to the high Young's modulus of bacterial cellulose separator and the formed stable solid electrolyte interphase (SEI) which rich in inorganic components such as boron oxides, LiF and Li2O. More intriguingly, this separator delivers an excellent cycling performance in LiFePO4/Li battery, stable cycling for 100 cycles with a low capacity loss at 1 C. These fascinating characteristics indicate this separator is a promising material for high-energy-density lithium metal batteries.

Key words: bacterial cellulose separator, high Young's modulus, lithium dendrite inhibition, lithium metal battery, interfacial chemistry