化学学报 ›› 2025, Vol. 83 ›› Issue (6): 624-638.DOI: 10.6023/A25030098 上一篇    下一篇

综述

多孔有机笼用于能源转换及储存的研究进展

崔雨琪, 李军玉, 孙建科*()   

  1. 北京理工大学 化学与化工学院 原子分子簇科学教育部重点实验室 北京 102488
  • 投稿日期:2025-03-28 发布日期:2025-05-15
  • 作者简介:

    崔雨琪, 2022年北京理工大学在读硕士研究生, 主要研究方向为多孔有机笼复合材料的制备及其催化性能研究.

    李军玉, 2024年北京理工大学在读博士研究生, 主要研究方向为多孔有机笼复合材料的制备及其催化性能研究.

    孙建科, 博士, 北京理工大学化学与化工学院教授, 博士生导师. 长期从事功能多孔材料与团簇催化化学方面的交叉研究工作, 在高效合成多孔(笼)材料并将其用于绿色催化、复合团簇仿生催化、仿生通道等领域取得了一系列研究成果. 迄今在Nature、Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Chem. Soc. Rev.、Acc. Chem. Res.、Acc. Mater. Res.、CCS Chem.等国际著名期刊杂志发表SCI论文70余篇, 多篇入选ESI高被引论文.

  • 基金资助:
    国家自然科学基金(22471018); 国家自然科学基金(22071008)

Advances in Porous Organic Cages for Energy Conversion and Storage

Yuqi Cui, Junyu Li, Jianke Sun*()   

  1. Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488
  • Received:2025-03-28 Published:2025-05-15
  • Contact: *E-mail: jiankesun@bit.edu.cn
  • About author:
    These authors contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(22471018); National Natural Science Foundation of China(22071008)

在国家能源结构转型和可持续发展战略的推动下, 高效储能及能量转换新材料与技术的开发正面临关键挑战. 其中, 对新型能量储存载体的探索及物质/电荷传输机制的深入研究, 已经成为该领域的热点. 多孔有机笼(Porous Organic Cages, POCs)作为一类新兴多孔材料, 凭借其结构可调性, 既可通过骨架功能化修饰, 又可利用离散型纳米空腔及表面结合位点将功能单元与笼结构整合, 从而成为构建功能复合材料的理想基元, 在光电能量转换与存储领域展现出广阔的应用前景. 本文综述了多孔有机笼的设计与合成策略, 重点总结了POCs功能材料在能量转换与储存方面的研究进展, 并进一步探讨了其在该领域发展中面临的挑战及未来发展方向, 以期为能源导向型POCs材料的合理设计及应用提供参考.

关键词: 多孔有机笼, 合成, 光催化, 电催化, 能量储存与转换

The national transition toward sustainable energy solutions necessitates the development of advanced materials and technologies for efficient energy conversion and storage. Addressing this demand requires innovative approaches to overcome existing limitations in energy systems, including the need for high-capacity storage, rapid charge transfer, and long term stability. In this context, research on innovative energy storage carriers and mass/charge transfer mechanisms has become a pivotal focus at the forefront of materials science and energy technology. Porous organic cages (POCs), a unique class of low crystalline density porous materials, have attracted significant interest due to their well-defined molecular structures, discrete nanopore cavities and high porosity. These properties make them highly effective for applications in gas adsorption/separation and catalysis. Unlike traditional extended framework materials such as metal organic frameworks (MOFs) or covalent organic frameworks (COFs), POCs are discrete and solution-processable molecules that offer superior solubility and structural tunability, which can be easily designed as various functional composites, broadening their applicability in emerging energy technologies. A particularly promising avenue for POCs lies in energy conversion and storage. Recent studies have demonstrated that functionalized POCs can serve as efficient charge transport materials, facilitating electron and ion movement in energy storage applications. Despite their immense potential, several challenges must be addressed before POCs can be widely adopted in commercial energy technologies. Key challenges include improving the scalability of POC synthesis, optimizing their stability under operational conditions, and enhancing their conductivity for broader energy applications. Furthermore, fundamental research is needed to better understand the charge transport mechanisms within POC-based materials, which will be crucial for advancing their practical implementation. This review provides a comprehensive overview of the design and synthesis strategies of POCs, summarizes recent advancements in their energy-related applications, and discusses the challenges and future research directions in the field. By offering theoretical insights into the strategic development of POCs for energy conversion and storage, this work aims to drive further innovation in sustainable energy technologies, contributing to the ongoing efforts to address global energy challenges.

Key words: porous organic cage, synthesis, photocatalysis, electrocatalysis, energy storage and conversion