化学学报 ›› 2026, Vol. 84 ›› Issue (1): 30-42.DOI: 10.6023/A25060224 上一篇    下一篇

研究论文

Sr/Fe协同调控LaMnO3电子结构及CO选择性催化还原反应机理研究

姚志豪a,b, 张巍a,b,*(), 周昭仪a,b, 李丹聪a,b, 张凯凯a,b, 刘涛a,b, 胡文凯a,b, 程守安a,b, 胡铭轩a,b, 刘昱佳a,b   

  1. a 长沙理工大学能源与动力工程学院 长沙 410114
    b 湖南省可再生能源电力技术重点实验室 长沙 410114
  • 投稿日期:2025-06-17 发布日期:2025-08-18
  • 基金资助:
    国家自然科学基金(52104391); 湖南省自然科学基金(2023JJ30047); 湖南省自然科学基金(2022JJ40501); 湖南省自然科学基金(2020JJ4098); 湖南省教育厅科学研究项目重点项目(21A0216); 湖南省自然科学基金青年学生基础研究项目(2025JJ60890)

Study on Synergistic Modulation of LaMnO3 Electronic Structure and CO Selective Catalytic Reduction Reaction Mechanism via Sr/Fe

Zhihao Yaoa,b, Wei Zhanga,b,*(), Zhaoyi Zhoua,b, Dancong Lia,b, Kaikai Zhanga,b, Tao Liua,b, Wenkai Hua,b, Shouan Chenga,b, Mingxuan Hua,b, Yujia Liua,b   

  1. a School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114
    b Key Laboratory of Renewable Energy and Electric Power Technology of Hunan Province, Changsha 410114
  • Received:2025-06-17 Published:2025-08-18
  • Contact: * E-mail: weizhang@csust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52104391); Hunan Natural Science Foundation(2023JJ30047); Hunan Natural Science Foundation(2022JJ40501); Hunan Natural Science Foundation(2020JJ4098); Key Project of Scientific Research Project of Hunan Provincial Department of Education(21A0216); Hunan Provincial Natural Science Foundation of China Young Scholars Basic Research Project(2025JJ60890)

本研究基于密度泛函理论系统探究了Sr/Fe掺杂对LaMnO3钙钛矿的CO选择性催化还原反应机理及抗毒性能机制. 结果表明, Fe单掺杂、Sr-Fe共掺杂有效提高了CO和NO分子在催化剂表面的吸附能力, 而Sr单掺杂会抑制NO在催化剂表面的吸附. Fe掺杂使表面Fe位点成为CO氧化活性中心, 而Mn位点则主导NO的吸附. 在LaSrMnFeO3表面中, CO优先与晶格氧反应生成CO2并形成氧空位, 随后NO吸附形成N2O2*中间体填补氧空位, 活化能垒为0.69 eV, 形成N2O*中间体, 气相的N2O吸附在催化剂表面Lewis酸位点, 解离产生N2*和表面吸附氧, 最终, CO与表面吸附氧克服了0.21 eV活化能垒发生氧化反应, 推动N2O*→N2*+O*反应平衡向右移动, 从而显著抑制N2O*副产物的积累. 上述反应表明, LaSrMnFeO3催化剂表面的CO选择性催化还原(CO-SCR)核心反应机制遵循Mars-van Krevelen机制, 由双分子机制向Mars-van Krevelen机制转变, 其中关键速控步骤N2O*→N2*+O*的反应能垒较未掺杂LaMnO3的双分子反应机制的1.64 eV显著降低至1.14 eV. 此外, 还研究了H2O和SO2在LaMnO3掺杂体系催化剂表面上的吸附性能, 发现Fe单掺杂能够有效提高催化剂的抗硫性能, 但会加剧H2O分子的不可逆吸附导致催化剂中毒失活. 而Sr-Fe共掺杂的协同效应使其同时具备优异抗水和抗硫性能, 为设计高效抗中毒钙钛矿催化剂提供了理论依据.

关键词: 密度泛函理论, LaMnO3, 氧空位, CO选择性催化还原(CO-SCR), Mars-van Krevelen, 抗水和抗硫性能

This study investigates the reaction mechanisms and anti-poisoning performance associated with Sr/Fe doping in LaMnO3 perovskite catalysts for CO selective catalytic reduction using density functional theory. The results demonstrate that both Fe single doping and Sr-Fe co-doping significantly enhance the adsorption capacity of CO and NO molecules on the catalyst surface, while Sr single doping inhibits NO adsorption. Fe doping transforms the surface Fe sites into centers of CO oxidative activity, whereas the Mn sites predominantly facilitate NO adsorption. On the surface of LaSrMnFeO3, CO preferentially reacts with lattice oxygen to produce CO2, generating oxygen vacancies. Subsequently, NO adsorption leads to the formation of an N2O2* intermediate that fills these vacancies, with an activation energy barrier of 0.69 eV, resulting in the formation of an N2O* intermediate. This gas-phase N2O* then adsorbs at the Lewis acid sites on the catalyst surface, where its dissociation produces N2* and surface-adsorbed oxygen. Ultimately, CO and the surface-adsorbed oxygen overcome an activation energy barrier of 0.21 eV, facilitating an oxidation reaction that drives the equilibrium of the N2O*→N2*+O* reaction to the right, thereby significantly reducing the accumulation of N2O* by-products. These findings indicate that the core reaction mechanism for CO-selective catalytic reduction (CO-SCR) on the surface of the LaSrMnFeO3 catalyst follows the Mars-van Krevelen mechanism, transitioning from a bimodal mechanism to the Mars-van Krevelen mechanism. Notably, the reaction energy barrier for the key rate-controlling step (N2O*→N2*+O*) is significantly reduced to 1.64 eV, compared to 1.14 eV for the undoped bimodal reaction mechanism of LaMnO3. Additionally, the adsorption performance of H2O and SO2 on the surface of the LaMnO3 doping system was investigated. Our findings reveal that Fe single doping effectively enhances the catalyst’s sulfur resistance but exacerbates the irreversible adsorption of H2O molecules, leading to catalyst poisoning and inactivation. In contrast, the synergistic effect of Sr-Fe co-doping provides excellent resistance to both water and sulfur, thereby offering a theoretical foundation for the design of efficient anti-poisoning perovskite catalysts.

Key words: density functional theory, LaMnO3, oxygen vacancy, CO-selective catalytic reduction (CO-SCR), Mars-van Krevelen, water and sulfur resistance