化学学报 ›› 2006, Vol. 64 ›› Issue (17): 1785-1792. 上一篇    下一篇

研究论文

CH3S与HCS双自由基反应的密度泛函理论研究

刘艳1; 王文亮*,1; 王渭娜1; 罗琼1,2; 李前树1,2   

  1. (1陕西师范大学化学与材料科学学院 西安 710062)
    (2北京理工大学理学院 北京 100081)
  • 投稿日期:2005-11-11 修回日期:2006-03-31 发布日期:2006-09-14
  • 通讯作者: 王文亮

Density Functional Theory Study on the Biradical Reaction between CH3S and HCS

LIU Yan1; WANG Wen-Liang*,1; WANG Wei-Na1; LUO Qiong1,2; LI Qian-Shu1,2   

  1. (1 School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062)
    (2 School of Science, Beijing Institute of Technology, Beijing 100081)
  • Received:2005-11-11 Revised:2006-03-31 Published:2006-09-14
  • Contact: WANG Wen-Liang

应用量子化学从头算和密度泛函理论(DFT)对CH3S与HCS双自由基单重态反应进行了研究. 在MPW1PW91/ 6-311G(d,p)水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型, 用内禀反应坐标(IRC)计算和频率分析方法对过渡态进行了验证. 在QCISD(t)/6-311++G(d,p)水平上计算各物种的单点能, 并对总能量进行了零点能校正. 研究结果表明, CH3S与HCS反应为多通道反应, 有4条可能的反应通道, 反应物首先通过S…S弱相互作用形成具有竞争反应机理的五元环硫-硫偶合中间体a和链状硫-硫偶合中间体c, 再由此经过氢迁移、离解、异构化等不同机理得到主要产物P1 (2CH2S), 次要产物P2 (CH3SH+CS), P3 (CH4+CS2)和P4 [CH2(SH)CSH]. 根据势能面分析, 所有反应均为放热反应, 生成P1的反应热为-165.55 kJ•mol-1. 通道Ra→TSa/bbP1为标题反应的主通道, 其速控步骤a→TSa/bb在200~2000 K温度区间内的速率常数可以表示为k1CVT/SCT=1.75×1010T0.65exp(-907.6/T) s-1. P3P4的生成需要越过很高的活化能垒, 是动力学禁阻步骤, 但在反应体系中加入合适催化剂, 改变其反应机理, 有可能使生成CH2(SH)CSH, CH4及CS2的反应易于进行.

关键词: CH3S, HCS, 密度泛函理论, 反应机理, 速率常数

A detailed theoretical survey of the potential energy surface (PES) for the reaction CH3S with HCS in gas phase is carried out at the QCISD(t)/6-311++G(d,p)//MPW1PW91/6-311G(d,p) level. The geometries, vibrational frequencies, and energies of all stationary points involved in the title reaction are calculated at the MPW1PW91/6-311G(d,p) level. More accurate energy information is provided by single-point calculations at QCISD(t)/6-311++G(d,p) level. Relationships of reactants, intermediates, transition states and products are confirmed by the intrinsic reaction coordinate (IRC) calculations. 8 intermediates and 9 transition states are located and a variety of possible reaction pathways are probed. The association of CH3S with HCS is found to be a barrierless process. Firstly it forms the energy-rich adducts a (five-member ring-type structure) or c (chain structure) through the weak S…S bond. Then, from adducts a and c, the main product P1 (2CH2S) can be produced, as well as secondary important products P2 (CH3SH+CS), P3 (CH4+CS2) and P4 [CH2(SH)CSH] via the different channels, i.e. hydrogen shift, dissociation and isomerizazion. The reaction pathway leading to the major product 2CH2S is as follows: Ra→TSa/bbP1. The rate constant of step a→TSa/bb is k1CVT/SCT=1.75×1010T0.65exp(-907.6/T) s-1 by means of small-curvature tunneling correction in the temperature range of 200~2000 K. By the analysis of the potential energy surface, we can draw the conclusion that all the channels are exothermic reactions and the reaction heat of generating P1 is -165.55 kJ•mol-1.

Key words: CH3S, HCS, density functional theory (DFT), reaction mechanism, rate constant