化学学报 ›› 2010, Vol. 68 ›› Issue (22): 2305-2311. 上一篇    下一篇

研究论文

气相中Ta活化分解CO2的自旋禁阻反应机理

刘玲玲1,王永成*,2,张力1   

  1. (1兰州城市学院化学与环境科学学院 兰州 730070)
    (2西北师范大学化学化工学院 兰州 730070)
  • 投稿日期:2010-02-12 修回日期:2010-05-31 发布日期:2010-07-08
  • 通讯作者: 王永成 E-mail:wangyc@nwnu.edu.cn
  • 基金资助:

    过渡金属活化小分子自旋禁阻反应动力学的理论计算研究

Spin-Forbidden Reaction Mechanism of CO2 Cleavage Activated by Ta in Gas Phase

Liu Lingling1 Wang Yongcheng*,2 Zhang Li1   

  1. (1 College of Chemistry and Environment Science, Lanzhou City University, Lanzhou 730070)
    (2 College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070)
  • Received:2010-02-12 Revised:2010-05-31 Published:2010-07-08

采用密度泛函理论中的UB3LYP方法, 对Ta 采用相对论校正赝势基组(SDD), C, O采用6-311+G(3d)基组, 计算研究了气相中不同自旋态下Ta活化CO2分解反应的微观机理. 计算结果表明, Ta活化CO2分解反应是典型的自旋禁阻反应, 以五重态进入反应通道, 经过五重态势能面到三重态势能面的系间窜越(ISC), 最终产物TaO, CO以三重态离开反应通道. 运用Harvey方法优化出最低能量交叉点(MECP), 并计算了MECP处的自旋-轨道耦合(SOC)常数(204.94 cm-1), 较大的SOC值说明了在MECP处的自旋-轨道耦合作用较强, 势能面的交叉降低了自旋禁阻反应能垒, 为反应提供了一条低能反应路径. 运用Landau-Zener跃迁几率公式计算了MECP处系间窜越几率, 较大的系间窜越几率说明了该自旋禁阻反应速率较快.

关键词: 密度泛函理论, Ta活化, 自旋禁阻反应, 最低能量交叉点, 自旋-轨道耦合, 系间窜越几率

Spin-forbidden reaction mechanism of CO2 cleavage activated by Ta in the gas phase was investigated, using density functional theory (DFT, UB3LYP) with the relativistic effective core potential (ECP) of basis sets (SDD) for Ta and the 6-311+G(3d) basis set for C and O. The calculation results show that Ta initially close to CO2 on the quintet surface, then the product, TaO and CO, exit the channel on the triplet surface. The process involves an intersystem crossing (ISC) from the quintet to the triplet state. The minimum energy crossing point (3-5MECP) is located by using the methods of Harvey et al. The large spin-orbit coupling (SOC) constant (204.94 cm-1) calculated shows that the spin-forbidden reaction takes place easily. The intersystem crossing probability estimated at MECP indicate that the spin-forbidden reaction have a rapid rate.

Key words: density functional theory, Ta activation, spin-forbidden reaction, minimum energy crossing point, spin-orbital coupling, intersystem crossing probability