化学学报 ›› 2008, Vol. 66 ›› Issue (18): 2052-2058. 上一篇 下一篇
研究论文
陈国华*,a,b 夏之宁*,a 陆 瑶b 廖立敏a
舒 茂a 孙家英a 李志良a
(a重庆大学生物工程学院/化学化工学院 重庆 400044)
(b四川理工学院材料与化学工程系 四川自贡 643000)
CHEN, Guo-Hua *,a,b XIA, Zhi-Ning *,a LU, Yao b LIAO, Li-Min a
SHU, Mao a SUN, Jia-Ying a LI, Zhi-Liang a
根据分子中不同类型原子间电相互作用的不同, 文中提出了一种手性分子电矩边矢量(Vmedc), 进一步拓展分子电矩边性矢量(Vmed)使用范围. 为检测该手性描述矢量的结构表达特性和模型预测能力, 分别对32个培哚普利拉类血管紧张素转化酶(ACE)抑制剂的对映结构体和7对苯基哌啶类σ-受体抑制剂进行考察. 32个ACE抑制剂多元逐步回归系数R=0.913 (R2=0.834, SD=0.768, F=33.875), 留一法交互检验为Rcv=0.877 (Rcv2=0.769, SDcv=0.906, Fcv=22.473), 具有较强预测能力; 继而用BP神经网络, 对60组随机样本(23∶9)进行留分法分析取得较好结果, 训练集平均为: RTraining=0.931 (RTraining2=0.967), 预测集为: Rcv=0.918 (Rcv2=0.842); 而对14个σ-受体抑制剂多元回归(R=0.955, Rcv2=0.849)获得与文献一致结果. 再用Fisher线性判别方法和BP神经网络对ACE抑制剂进行判别分析, 其活性分类88.89%正确(仅9号错误), 非活性分类100.0%正确, 总分类正确率为96.87%. 两个数据集测试证明该方法与其它文献方法相当, 这为定量构效关系(QSAR)研究提供一种新选择, 扩充了Vmed描述矢量应用范围.