化学学报 ›› 2010, Vol. 68 ›› Issue (04): 315-319. 上一篇    下一篇

研究论文

硅掺杂的氮化硼纳米管对氯化氰吸附性能的理论研究

王若曦1,2,张冬菊*,2,刘成卜2   

  1. (1山东警察学院刑事科学技术系 济南 250014)
    (2山东大学理论化学研究所 济南 250100)
  • 投稿日期:2009-05-19 修回日期:2009-11-04 发布日期:2010-02-28
  • 通讯作者: 王若曦 E-mail:wangrx73@163.com
  • 基金资助:

    国家重点基础研究发展973计划(No. 2007CB936602);国家自然科学基金 (Nos. 20773078;20873076) ;中国博士后科学基金(No. 20080430188);山东省博士后创新项目专项资金(No. 200802022)

Theoretical Study on the Adsorption Property of the Si-Doped Boron Nitride Nanotube towards Cyanogen Chloride

Wang Ruoxi1,2 Zhang Dongju*,2 Liu Chengbu2   

  1. (1 Criminal Scientific and Technological Department, Shandong Police College, Jinan 250014)
    (2 Institute of Theoretical Chemistry, Shandong University, Jinan 250100)
  • Received:2009-05-19 Revised:2009-11-04 Published:2010-02-28

为了探索氮化硼纳米管(BNNT)在化学传感器件领域的潜在应用, 我们利用密度泛函理论研究了(8, 0)单壁BNNT和硅掺杂的(8, 0) BNNT对毒性气体氯化氰分子(ClCN)的吸附性能. 结果表明, 硼位或氮位硅掺杂的BNNT, 均对ClCN分子存在较强的化学吸附, 而纯氮化硼纳米管对ClCN仅有较弱的物理吸附. 态密度的计算进一步表明硅掺杂使纳米管费米能级附近的电子结构发生显著变化, 由于杂化态的引入, 使带隙明显减小, 增强了对毒性ClCN分子的吸附敏感性. 硅掺杂的BNNT有望成为检测毒性ClCN分子的潜在资源.

关键词: 氮化硼纳米管, 硅, 掺杂, 氯化氰, 密度泛函理论

To explore the potential application of boron nitride nanotubes (BNNTs) in chemical sensor devices, we investigate the adsorption properties of the pristine and silicon doped (Si-doped) (8, 0) single-walled BNNTs towards the toxic gas cyanogen chloride (ClCN) molecule by performing density functional theory (DFT) calculations. The results show that the Si-doped BNNT presents strong chemisorption to the ClCN molecule at both the silicon-substituted boron defect site and the silicon-substituted nitrogen defect site, which is in contrast with the weak physisorption on the pristine BNNT. The calculated electronic density of states (DOSs) further indicate that the doping of the Si atom results in the remarkable changes of the electronic structure of the BNNT near Fermi level, and the introduction of the local states decreases the band gap and increases the adsorption sensitivity towards the toxic ClCN molecule. The Si-doped BNNT is expected to be a potential resource for detecting the presence of toxic ClCN.

Key words: boron nitride nanotube, silicon, doping, cyanogen chloride, density functional theory