化学学报 ›› 2021, Vol. 79 ›› Issue (6): 694-704.DOI: 10.6023/A21010017 上一篇 下一篇
所属专题: 分子探针、纳米生物学与生命分析化学
综述
投稿日期:
2021-01-19
发布日期:
2021-03-30
通讯作者:
吴燕
作者简介:
易荣楠, 男, 1992年生, 主要从事拉曼光谱技术在毒物毒品中的分析检验、有机合成方法学等方面的研究. 作为核心成员参与国家自然科学基金项目2项, 发表SCI论文8篇. |
吴燕副教授, 女, 1988年生, 主要研究方向为SERS技术及生物传感器的应用研究. 主持国家自然科学基金、重庆市科委项目、重庆市教委项目、长江师范学院青年人才成长支持计划项目、长江师范学院科研启动项目等6项. 作为骨干成员参与多项国家自然科学基金、重庆市自然科学基金等项目的研究. 近年来, 以第一作者与通讯作者发表SCI论文12篇, 授权发明专利1项, 发表教改论文2篇. |
基金资助:
Received:
2021-01-19
Published:
2021-03-30
Contact:
Yan Wu
Supported by:
文章分享
microRNA是一段长约为18~24个核苷酸的内源性非编码单链RNA. 最新研究发现: 许多疾病和肿瘤的发生与microRNA的表达水平息息相关, 且microRNA有望成为新型肿瘤标志物及癌症治疗的新目标. 因此, 发展高灵敏度、高特异性及简单快速的microRNA分析检测方法对于生物医学研究和癌症的早期诊断具有重要的意义. 表面增强拉曼光谱(SERS)技术由于具有灵敏度高、检测速度快、指纹识别、水干扰小等独特优势, 在癌症的早期诊断领域具有很大的应用价值. 作者综述了SERS技术在microRNA检测方面的最新研究进展, 分析了该技术在生物检测中亟待解决的关键问题和挑战, 并对其未来的发展前景进行了展望.
易荣楠, 吴燕. 表面增强拉曼光谱技术在microRNA检测中的研究进展[J]. 化学学报, 2021, 79(6): 694-704.
Rongnan Yi, Yan Wu. Research Progress on Surface-Enhanced Raman Spectroscopy Technique for the Detection of microRNA[J]. Acta Chimica Sinica, 2021, 79(6): 694-704.
[1] |
Lu, J.; Getz, G.; Miska, E. A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B. L.; Mak, R. H.; Ferrando, A. A.; Downing, J. R.; Jacks, T.; Horvitz, H. R.; Golub, T. R. Nature 2005, 435, 834.
doi: 10.1038/nature03702 |
[2] |
Ma, W.; Fu, P.; Sun, M.; Xu, L.; Kuang, H.; Xu, C. J. Am. Chem. Soc. 2017, 139, 11752.
doi: 10.1021/jacs.7b03617 |
[3] |
Rupaimoole, R.; Slack, F. J. Nature Rev. Drug Discov. 2017, 16, 203.
doi: 10.1038/nrd.2016.246 |
[4] |
Válóczi, A.; Hornyik, C.; Varga, N.; Burgyán, J.; Kauppinen, S.; Havelda, Z. Nucleic Acids Res. 2004, 32, e175.
doi: 10.1093/nar/gnh171 |
[5] |
Chen, C.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R.; Lao, K. Q.; Livak, K. J.; Guegler, K. J. Nucleic Acids Res. 2005, 33, e179.
doi: 10.1093/nar/gni178 |
[6] |
Lee, J. M.; Jung, Y. Angew. Chem. Int. Ed. 2011, 50, 12487.
doi: 10.1002/anie.201105605 |
[7] |
Raman, C. V.; Krishnan, K. S. Nature 1928, 121, 501.
|
[8] |
Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Chem. Rev. 2018, 118, 4946.
doi: 10.1021/acs.chemrev.7b00668 |
[9] |
Wu, H. M.S. Thesis, Anhui Jianzhu University, Hefei, 2020. (in Chinese)
|
(吴焕乐, 硕士论文, 安徽建筑大学, 合肥, 2020.)
|
|
[10] |
Hu, S.; Zhang, J. Environmental Chem. 2020, 39, 2459. (in Chinese)
|
(胡舒馨, 张建锋, 环境化学, 2020, 39, 2459.)
|
|
[11] |
Cheng, J.; Wang, P.; Su, X. Acta Chim. Sinica 2019, 77, 977. (in Chinese)
doi: 10.6023/A19040139 |
(程劼, 王培龙, 苏晓鸥, 化学学报, 2019, 77, 977.)
doi: 10.6023/A19040139 |
|
[12] |
Dong, R.; Li, S.; Lin, D.; Chen, H.; Yang, L. Sci. Sin. Chim. 2021, 51, 294. (in Chinese)
doi: 10.1360/SSC-2020-0196 |
(董荣录, 李绍飞, 林东岳, 陈慧, 杨良保, 中国科学: 化学, 2021, 51, 294.)
|
|
[13] |
Li, F.; Xu, W.; Liu, J.; Hu, X.; Xu, T. Guangzhou Chem. Industry. 2018, 46, 9. (in Chinese)
|
(李帆, 徐维平, 刘建楠, 胡小燕, 徐婷娟, 广州化工, 2018, 46, 9.)
|
|
[14] |
Liu, S.; Huo, Y. P.; Kang, W. J.; Gao, Z. X. Sci. Sin. Chim. 2020, 65, 1448. (in Chinese)
|
(刘厦, 霍亚鹏, 康维钧, 高志贤, 中国科学: 化学, 2020, 65, 1448.)
|
|
[15] |
Yi, Y. Ph.D. Dissertation, Zhejiang University of Technology, Hangzhou, 2019. (in Chinese)
|
(易喻, 博士论文, 浙江工业大学, 杭州, 2019.)
|
|
[16] |
He, H.; Zhou, L.; Liu, Z. Acta Chim. Sinica 2021, 79, 45. (in Chinese)
doi: 10.6023/A20080364 |
(贺晖, 周玲俐, 刘震, 化学学报, 2021, 79, 45.)
doi: 10.6023/A20080364 |
|
[17] |
Liu, L.; Shangguan, C.; Guo, J.; Ma, K.; Jiao, S.; Yao, Y.; Wang, J. Adv. Opt. Mater. 2020, 8, 2001214.
doi: 10.1002/adom.v8.23 |
[18] |
Wen, S.; Su, Y.; Dai, C.; Jia, J.; Fan, G.-C.; Jiang, L.-P.; Song, R.-B.; Zhu, J.-J. Anal. Chem. 2019, 91, 12298.
doi: 10.1021/acs.analchem.9b02476 |
[19] |
Wu, Y.; He, Y.; Yang, X.; Yuan, R.; Chai, Y. Sens. Actuators B: Chem. 2018, 275, 260.
doi: 10.1016/j.snb.2018.08.057 |
[20] |
Wang, S.; Wu, C.; Luo, J.; Luo, X.; Yuan, R.; Yang, X. Microchim. Acta 2020, 187, 460.
doi: 10.1007/s00604-020-04449-7 |
[21] |
Pang, Y.; Wang, C.; Lu, L.; Wang, C.; Sun, Z.; Xiao, R. Biosens. Bioelectron. 2019, 130, 204.
doi: 10.1016/j.bios.2019.01.039 |
[22] |
Pang, Y.; Wang, C.; Wang, J.; Sun, Z.; Xiao, R.; Wang, S. Biosens. Bioelectron. 2016, 79, 574.
doi: 10.1016/j.bios.2015.12.052 |
[23] |
Hu, Y.; Wu, C.; Huang, S.; Luo, X.; Yuan, R.; Yang, X. Talanta 2021, 228, 122240.
doi: 10.1016/j.talanta.2021.122240 |
[24] |
Lee, T.; Wi, J.-S.; Oh, A.; Na, H.-K.; Lee, J.; Lee, K.; Lee, T. G.; Haam, S. Nanoscale 2018, 10, 3680.
doi: 10.1039/C7NR08066B |
[25] |
Meng, D.; Ma, W.; Wu, X.; Xu, C.; Kuang, H. Small 2020, 16, 2000003.
doi: 10.1002/smll.202000003 pmid: 32374494 |
[26] |
Liu, J.; Zheng, T.; Tian, Y. Angew. Chem. Int. Ed. 2019, 58, 7757.
doi: 10.1002/anie.v58.23 |
[27] |
Su, J.; Wang, D.; Nörbel, L.; Shen, J.; Zhao, Z.; Dou, Y.; Peng, T.; Shi, J.; Mathur, S.; Fan, C.; Song, S. Anal. Chem. 2017, 89, 2531.
doi: 10.1021/acs.analchem.6b04729 |
[28] |
Guo, R.; Yin, F.; Sun, Y.; Mi, L.; Shi, L.; Tian, Z.; Li, T. ACS Appl. Mater. Interfaces 2018, 10, 25770.
doi: 10.1021/acsami.8b06757 |
[29] |
Sun, Y.; Li, T. Anal. Chem. 2018, 90, 11614.
doi: 10.1021/acs.analchem.8b03067 |
[30] |
Zhang, H.; Fu, C.; Yi, Y.; Zhou, X.; Zhou, C.; Ying, G.; Shen, Y.; Zhu, Y. Anal. Methods 2018, 10, 624.
doi: 10.1039/C7AY02727C |
[31] |
Zhang, H.; Fu, C.; Wu, S.; Shen, Y.; Zhou, C.; Neng, J.; Yi, Y.; Jin, Y.; Zhu, Y. Anal. Methods 2019, 11, 783.
doi: 10.1039/C8AY02423E |
[32] |
Zhang, H.; Yi, Y.; Zhou, C.; Ying, G.; Zhou, X.; Fu, C.; Zhu, Y.; Shen, Y. RSC Adv. 2017, 7, 52782.
doi: 10.1039/C7RA10918K |
[33] |
Liu, H.; Li, Q.; Li, M.; Ma, S.; Liu, D. Anal. Chem. 2017, 89, 4776.
doi: 10.1021/acs.analchem.7b00461 |
[34] |
Si, Y.; Xu, L.; Wang, N.; Zheng, J.; Yang, R.; Li, J. Anal. Chem. 2020, 92, 2649.
doi: 10.1021/acs.analchem.9b04606 |
[35] |
Liang, Z.; Zhou, J.; Petti, L.; Shao, L.; Jiang, T.; Qing, Y.; Xie, S.; Wu, G. Analyst 2019, 144, 1741.
doi: 10.1039/C8AN02259C |
[36] |
Xu, L.; Gao, Y.; Kuang, H.; Liz-Marzán, L. M.; Xu, C. Angew. Chem. Int. Ed. 2018, 57, 10544.
doi: 10.1002/anie.v57.33 |
[37] |
Ma, W.; Fu, P.; Sun, M.; Xu, L.; Kuang, H.; Xu, C. J. Am. Chem. Soc. 2017, 139, 11752.
doi: 10.1021/jacs.7b03617 |
[38] |
Ma, W.; Sun, M.; Fu, P.; Li, S.; Xu, L.; Kuang, H.; Xu, C. Adv. Mater. 2017, 29, 1703410.
doi: 10.1002/adma.201703410 |
[39] |
Zhang, Q.; Liu, J.; Dong, Y.; Li, W.; Xing, R.; Ma, Y.; Liu, Z. ACS Appl. Nano Mater. 2019, 2, 3960.
doi: 10.1021/acsanm.9b00855 |
[40] |
Zhou, W.; Tian, Y.-F.; Yin, B.-C.; Ye, B.-C. Anal. Chem. 2017, 89, 6120.
doi: 10.1021/acs.analchem.7b00902 |
[41] |
Schechinger, M.; Marks, H.; Mabbott, S.; Choudhury, M.; Cote, G. Analyst 2019, 144, 4033.
doi: 10.1039/c9an00653b pmid: 31143920 |
[42] |
Wang, H.-N.; Crawford, B. M.; Norton, S. J.; Vo-Dinh, T. J. Phys. Chem. B 2019, 123, 10245.
doi: 10.1021/acs.jpcb.9b06804 |
[43] |
Han, Y.; Qiang, L.; Gao, Y.; Gao, J.; He, Q.; Liu, H.; Han, L.; Zhang, Y. Appl. Surface Sci. 2021, 541, 148456.
doi: 10.1016/j.apsusc.2020.148456 |
[44] |
Wang, X.; liu, B.; Xiao, M.; Zou, Y.; Lai, W.; Pei, H.; Alam, M. F.; Zhang, W.; Wan, Y.; Li, L. Biosens. Bioelectron. 2020, 156, 112130.
doi: 10.1016/j.bios.2020.112130 |
[45] |
He, M.-Q.; Chen, S.; Yao, K.; Wang, K.; Yu, Y.-L.; Wang, J.-H. Small Methods 2019, 3, 1900017.
doi: 10.1002/smtd.v3.5 |
[46] |
Jiang, S.; Li, Q.; Wang, C.; Pang, Y.; Sun, Z.; Xiao, R. ACS Sens. 2021, 6, 852.
doi: 10.1021/acssensors.0c01900 |
[47] |
Cheng, L.; Zhang, Z.; Zuo, D.; Zhu, W.; Zhang, J.; Zeng, Q.; Yang, D.; Li, M.; Zhao, Y. ACS Appl. Mater. Interfaces 2018, 10, 34869.
doi: 10.1021/acsami.8b10252 |
[48] |
Cao, X.; Wang, Z.; Bi, L.; Bi, C.; Du, Q. Nanoscale 2020, 12, 1513.
doi: 10.1039/C9NR07791J |
[49] |
Ye, L.-P.; Hu, J.; Liang, L.; Zhang, C.-Y. Chem. Commun. 2014, 50, 11883.
doi: 10.1039/C4CC05598E |
[50] |
Zheng, J.; Ma, D.; Shi, M.; Bai, J.; Li, Y.; Yang, J.; Yang, R. Chem. Commun. 2015, 51, 16271.
doi: 10.1039/C5CC06549F |
[51] |
Ye, S.; Wu, Y.; Zhai, X.; Tang, B. Anal. Chem. 2015, 87, 8242.
doi: 10.1021/acs.analchem.5b01186 |
[52] |
He, Y.; Yang, X.; Yuan, R.; Chai, Y. Anal. Chem. 2017, 89, 2866.
doi: 10.1021/acs.analchem.6b04082 |
[53] |
He, Y.; Yang, X.; Yuan, R.; Chai, Y. Anal. Chem. 2017, 89, 8538.
doi: 10.1021/acs.analchem.7b02321 |
[54] |
Yang, X.; Wang, S.; Wang, Y.; He, Y.; Chai, Y.; Yuan, R. ACS Appl. Mater. Interfaces 2018, 10, 12491.
doi: 10.1021/acsami.8b01974 |
[55] |
Luo, W.; Wu, C.; Huang, S.; Luo, X.; Yuan, R.; Yang, X. Anal. Chem. 2020, 92, 15573.
doi: 10.1021/acs.analchem.0c03633 |
[56] |
He, Y.; Yang, X.; Yuan, R.; Chai, Y. J. Mater. Chem. B 2019, 7, 2643.
doi: 10.1039/C8TB02894J |
[57] |
Ma, D.; Huang, C.; Zheng, J.; Tang, J.; Li, J.; Yang, J.; Yang, R. Biosens. Bioelectron. 2018, 101, 167.
doi: 10.1016/j.bios.2017.08.062 |
[58] |
Du, X.-Y.; Wu, S.-H.; Huang, X.-B.; Sun, J.-J. ACS Appl. Nano Mater. 2021, 4, 2565.
doi: 10.1021/acsanm.0c03208 |
[59] |
Wu, Y.; Li, Y.; Han, H.; Zhao, G.; Zhang, X. Anal. Biochem. 2019, 564-565, 16.
doi: 10.1016/j.ab.2018.10.004 |
[60] |
Wang, G.; Guo, Y.; Liu, Y.; Zhou, W.; Wang, G. ACS Sens. 2021, 6, 958.
doi: 10.1021/acssensors.0c02136 |
[61] |
Si, Y.; Xu, L.; Deng, T.; Zheng, J.; Li, J. ACS Sens. 2020, 5, 4009.
doi: 10.1021/acssensors.0c01876 |
[62] |
Liu, C.; Chen, C.; Li, S.; Dong, H.; Dai, W.; Xu, T.; Liu, Y.; Yang, F.; Zhang, X. Anal. Chem. 2018, 90, 10591.
doi: 10.1021/acs.analchem.8b02819 |
[63] |
Chen, J.; Wu, Y.; Fu, C.; Cao, H.; Tan, X.; Shi, W.; Wu, Z. Biosens. Bioelectron. 2019, 143, 111619.
doi: 10.1016/j.bios.2019.111619 |
[64] |
Ye, S.; Li, X.; Wang, M.; Tang, B. Anal. Chem. 2017, 89, 5124.
doi: 10.1021/acs.analchem.7b00697 |
[65] |
Zhang, N.; Ye, S.; Wang, Z.; Li, R.; Wang, M. ACS Sens. 2019, 4, 924.
doi: 10.1021/acssensors.9b00031 |
[66] |
Zhang, J.; Zhang, H.; Ye, S.; Wang, X.; Ma, L. Anal. Chem. 2021, 93, 1466.
doi: 10.1021/acs.analchem.0c03491 |
[67] |
Masterson, A. N.; Liyanage, T.; Berman, C.; Kaimakliotis, H.; Johnson, M.; Sardar, R. Analyst 2020, 145, 4173.
doi: 10.1039/d0an00538j pmid: 32490854 |
[68] |
Wang, Z.; Ye, S.; Zhang, N.; Liu, X.; Wang, M. Anal. Chem. 2019, 91, 5043.
doi: 10.1021/acs.analchem.8b05172 |
[69] |
Ma, L.; Ye, S.; Wang, X.; Zhang, J. ACS Sens. 2021, 6, 1392.
doi: 10.1021/acssensors.1c00063 |
[70] |
Mabbott, S.; Fernandes, S. C.; Schechinger, M.; Cote, G. L.; Faulds, K.; Mace, C. R.; Graham, D. Analyst 2020, 145, 983.
doi: 10.1039/c9an01748h pmid: 31829323 |
[71] |
Wang, W.; Li, Y.; Nie, A.; Fan, G.-C.; Han, H. Analyst 2021, 146, 848.
doi: 10.1039/D0AN02177F |
[72] |
Lee, T.; Mohammadniaei, M.; Zhang, H.; Yoon, J.; Choi, H. K.; Guo, S.; Guo, P.; Choi, J.-W. Adv. Sci. 2020, 7, 1902477.
doi: 10.1002/advs.v7.3 |
[73] |
Li, N.; Shen, F.; Cai, Z.; Pan, W.; Yin, Y.; Deng, X.; Zhang, X.; Machuki, J. O.; Yu, Y.; Yang, D.; Yang, Y.; Guan, M.; Gao, F. Small 2020, 16, 2005511.
doi: 10.1002/smll.v16.49 |
[74] |
Li, S.; Xu, L.; Ma, W.; Wu, X.; Sun, M.; Kuang, H.; Wang, L.; Kotov, N. A.; Xu, C. J. Am. Chem. Soc. 2016, 138, 306.
doi: 10.1021/jacs.5b10309 |
[75] |
He, X.; Zeng, T.; Li, Z.; Wang, G.; Ma, N. Angew. Chem. Int. Ed. 2016, 55, 3073.
doi: 10.1002/anie.201509726 |
[76] |
Kim, W. H.; Lee, J. U.; Song, S.; Kim, S.; Choi, Y. J.; Sim, S. J. Analyst 2019, 144, 1768.
doi: 10.1039/C8AN01745J |
[77] |
Lee, J. U.; Kim, W. H.; Lee, H. S.; Park, K. H.; Sim, S. J. Small 2019, 15, 1804968.
doi: 10.1002/smll.v15.17 |
[78] |
Peng, L.; Zhou, J.; Liang, Z.; Zhang, Y.; Petti, L.; Jiang, T.; Gu, C.; Yang, D.; Mormile, P. Anal. Methods 2019, 11, 2960.
doi: 10.1039/C9AY00573K |
[79] |
Kang, T.; Zhu, J.; Luo, X.; Jia, W.; Wu, P.; Cai, C. Anal. Chem. 2021, 93, 2519.
doi: 10.1021/acs.analchem.0c04561 |
[80] |
Shen, Y. T. Ph.D. Dissertation, Jilin University, Changchun, 2020. (in Chinese)
|
(申燕婷, 博士论文, 吉林大学, 长春, 2020.)
|
|
[81] |
Liu, C. H. Ph.D. Dissertation, University of Science and Technology Beijing, Beijing, 2019. (in Chinese)
|
(刘聪慧, 博士论文, 北京科技大学, 北京, 2019.)
|
|
[82] |
Si, Y. M. Ph.D. Dissertation, Hunan University, Changsha, 2019. (in Chinese)
|
(司艳美, 博士论文, 湖南大学, 长沙, 2019.)
|
|
[83] |
He, Y. Ph.D. Dissertation, Southwest University, Chongqing, 2019. (in Chinese)
|
(何毅, 博士论文, 西南大学, 重庆, 2019.)
|
[1] | 袁宏宇, 徐敏敏, 姚建林. 电化学SPR协同催化对氯苯硫酚界面反应的SERS研究[J]. 化学学报, 2021, 79(12): 1481-1485. |
[2] | 杨晶亮, 杨伟民, 林嘉盛, 汪安, 徐娟, 李剑锋. 电场强度对等离激元诱导热电子的影响[J]. 化学学报, 2020, 78(7): 670-674. |
[3] | 马秋琳, 冯楠, 鞠熀先. 前列腺癌相关肿瘤标志物分析方法的研究进展[J]. 化学学报, 2020, 78(11): 1213-1222. |
[4] | 倪宇欣, 张晨杰, 袁亚仙, 徐敏敏, 姚建林. 纳米ZnO的表面增强拉曼散射效应来源研究[J]. 化学学报, 2019, 77(7): 641-646. |
[5] | 左方涛, 徐威, 赵爱武. 基于功能化Fe3O4@Ag纳米粒子快速检测Hg2+的SERS方法[J]. 化学学报, 2019, 77(4): 379-386. |
[6] | 刘娇, 孙海龙, 印璐, 袁亚仙, 徐敏敏, 姚建林. 微流控芯片结合表面增强拉曼光谱实时监测α-苯乙醇的微量合成反应[J]. 化学学报, 2019, 77(3): 257-262. |
[7] | 王猛, 闫昕, 韦德泉, 梁兰菊, 王岳平. Au/Ag复合纳米笼在表面增强拉曼光谱中的应用[J]. 化学学报, 2019, 77(2): 184-188. |
[8] | 程劼, 王培龙, 苏晓鸥. 表面增强拉曼光谱检测二噁英类化合物研究进展[J]. 化学学报, 2019, 77(10): 977-983. |
[9] | 马超, 武佳炜, 朱琳, 韩晓霞, 阮伟东, 宋薇, 王旭, 赵冰. g-C3N4/Ag纳米复合材料表面增强拉曼基底对婴幼儿糖果中的罗丹明B的痕量检测[J]. 化学学报, 2019, 77(10): 1024-1030. |
[10] | 焦岑蕾, 王炜, 刘娇, 袁亚仙, 徐敏敏, 姚建林. 表面增强拉曼光谱与高效液相色谱联用技术在Suzuki偶联反应实时[J]. 化学学报, 2018, 76(7): 526-530. |
[11] | 张晨杰, 张婧, 林洁茹, 金琦, 徐敏敏, 姚建林. 金纳米粒子单层膜表面SPR催化反应的原位SERS研究[J]. 化学学报, 2017, 75(9): 860-865. |
[12] | 高志刚, 郑婷婷, 邓九, 李晓瑞, 曲玥阳, 陆瑶, 刘婷娇, 罗勇, 赵伟杰, 林炳承. 基于便携拉曼光谱仪和双层纸芯片的头发皮质醇超高灵敏检测[J]. 化学学报, 2017, 75(4): 355-359. |
[13] | 胡正利, 杜冀晖, 应佚伦, 彭岳一, 曹婵, 龙亿涛. 纳米孔道单分子检测结直肠癌MicroRNAs[J]. 化学学报, 2017, 75(11): 1087-1090. |
[14] | 翟晨, 彭彦昆, 李永玉, 徐田锋. 基于表面增强拉曼光谱的苹果毒死蜱残留无损检测方法[J]. 化学学报, 2015, 73(11): 1167-1172. |
[15] | 李晓利, 王愈聪, 张学晶, 赵云颉, 刘成辉, 李正平. 双链特异性核酸酶介导的高灵敏度microRNA分析[J]. 化学学报, 2014, 72(3): 395-400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||