化学学报 ›› 2022, Vol. 80 ›› Issue (9): 1217-1222.DOI: 10.6023/A22060261 上一篇 下一篇
研究论文
宋思睿a, 唐永和a, 孙良广b, 郭锐a, 姜冠帆a, 林伟英a,*()
投稿日期:
2022-06-13
发布日期:
2022-08-24
通讯作者:
林伟英
基金资助:
Sirui Songa, Yonghe Tanga, Liangguang Sunb, Rui Guoa, Guanfan Jianga, Weiying Lina()
Received:
2022-06-13
Published:
2022-08-24
Contact:
Weiying Lin
Supported by:
文章分享
极性是生物微环境的重要参数之一, 在很大程度上, 生物体内许多生命活动都受到极性变化的影响, 本工作通过改变香豆素母体上的推-拉电子基团, 设计并合成了一种具有较大斯托克斯位移的新型极性荧光探针COM-PO, 该探针的荧光强度和波长会随着测试体系的极性变化而发生改变. 当极性增加时, COM-PO的激发态能量会通过偶极-偶极的相互作用散失在溶剂中, 荧光发射强度降低, 而在低极性溶剂中荧光发射强度增强, 利用这种特性实现了对极性的检测. 本工作通过荧光光谱、荧光成像实验表明COM-PO能够在样品中实现极性检测, 该探针有望实现与极性相关的疾病的早期诊断.
宋思睿, 唐永和, 孙良广, 郭锐, 姜冠帆, 林伟英. 基于香豆素荧光团的新型极性检测荧光探针的开发及其成像应用[J]. 化学学报, 2022, 80(9): 1217-1222.
Sirui Song, Yonghe Tang, Liangguang Sun, Rui Guo, Guanfan Jiang, Weiying Lin. Development of a Novel Fluorescent Probe Based on Coumarin Fluorophore for Polarity Detection and Its Imaging Applications[J]. Acta Chimica Sinica, 2022, 80(9): 1217-1222.
Solvent | ε/(mol•L-1•cm-1) | λb/λa (nm) | Δλs(斯托克斯位移)/nm |
---|---|---|---|
1,4-Dioxane | 5.45×103 | 460/564 | 96 |
THF | 2.36×103 | 465/590 | 125 |
MeOH | 5.78×104 | 475/620 | 145 |
DMSO | 8.25×104 | 480/625 | 145 |
Acetonitrile PBS | 7.77×103 6.73×103 | 468/580 479/627 | 112 148 |
Solvent | ε/(mol•L-1•cm-1) | λb/λa (nm) | Δλs(斯托克斯位移)/nm |
---|---|---|---|
1,4-Dioxane | 5.45×103 | 460/564 | 96 |
THF | 2.36×103 | 465/590 | 125 |
MeOH | 5.78×104 | 475/620 | 145 |
DMSO | 8.25×104 | 480/625 | 145 |
Acetonitrile PBS | 7.77×103 6.73×103 | 468/580 479/627 | 112 148 |
[1] |
Nagy M.; Rácz D.; Nagy Z. L.; Nagy T.; Fehér P. P.; Purgel M.; Zsuga M.; Keki S. Dyes Pigm. 2016, 133, 445.
doi: 10.1016/j.dyepig.2016.06.036 |
[2] |
Li M.; Fan J.; Li H.; Du J.; Long S.; Peng X. Biomaterials 2018, 164, 98.
doi: 10.1016/j.biomaterials.2018.02.044 |
[3] |
Fan L.; Wang X.; Zan Q.; Fan L.; Li F.; Yang Y.; Zhang C.; Shuang S.; Dong C. Anal. Chem. 2021, 93, 8019.
doi: 10.1021/acs.analchem.1c01125 pmid: 34037378 |
[4] |
Gissen P.; Arias I. M. J. Hepatol. 2015, 63, 1023.
doi: 10.1016/j.jhep.2015.06.015 pmid: 26116792 |
[5] |
Doherty J.; Raoof A.; Hussain A.; Wolna M.; Cinque G.; Brown M.; Gardner P.; Denbigh J. Analyst 2019, 144, 997.
doi: 10.1039/c8an01566j pmid: 30403210 |
[6] |
Liu H.; Chen L.; Xu C.; Li Z.; Zhang H.; Zhang X.; Tan W. Chem. Soc. Rev. 2018, 47, 7140.
doi: 10.1039/C7CS00862G |
[7] |
Yin J.; Huang L.; Wu L.; Li J.; Jame D. T.; Lin W. Chem. Soc. Rev. 2021, 50, 12098.
doi: 10.1039/D1CS00645B |
[8] |
Ren M.; Li Z.; Deng B.; Wang L.; Lin W. Anal. Chem. 2019, 91, 2932.
doi: 10.1021/acs.analchem.8b05116 |
[9] |
Wang J.; Lin W.; Li W. Biomaterials 2013, 34, 7429.
doi: 10.1016/j.biomaterials.2013.06.013 |
[10] |
Zheng K.; Lin W.; Tan L. Org. Biomol. Chem. 2012, 10, 9683.
doi: 10.1039/c2ob26956b |
[11] |
Yuan L.; Lin W.; Yang Y.; Song J. Chem. Commun. 2011, 47, 4703.
doi: 10.1039/c0cc05585a |
[12] |
Yu X.; Xiang L.; Yang S.; Qu S.; Zeng X.; Zhou Y.; Yang R. Spectrochim. Acta, Part A 2021, 245, 118887.
doi: 10.1016/j.saa.2020.118887 |
[13] |
Chen X.; Wang F.; Hyun J. Y.; Wei T.; Qiang J.; Ren X.; Shin I.; Yoon J. Chem. Soc. Rev. 2016, 45, 2976.
doi: 10.1039/C6CS00192K |
[14] |
Jiang C.; Huang H.; Kang X.; Yang L.; Xi Z.; Sun H.; Pluth M. D.; Yi L. Chem. Soc. Rev. 2021, 50, 7436.
doi: 10.1039/D0CS01096K |
[15] |
Gao L.; Wang W.; Wang X.; Yang F.; Xie L.; Shen J.; Brimble M. A.; Xiao Q.; Yao S. Q. Chem. Soc. Rev. 2021, 50, 1219.
doi: 10.1039/D0CS00115E |
[16] |
Xiao H.; Zhang W.; Li P.; Zhang W.; Wang X.; Tang B. Angew. Chem. Int. Ed. 2020, 59, 4216.
doi: 10.1002/anie.201906793 |
[17] |
Cai F.; Hou B.; Zhang S.; Chen H.; Ji S.; Shen X. C.; Liang H. J. Mater. Chem. B 2019, 7, 2493.
doi: 10.1039/C9TB00179D |
[18] |
Zhang S.; Chen H.; Wang L.; Qin X.; Jiang B. P.; Ji S. C.; Shen X. C.; Liang H. Angew. Chem. Int. Ed. 2022, 61, e202107076.
|
[19] |
Liu L.; Xu J.; Zhang S.; Chen H.; Wang L.; Shen X. C.; Chen H. Sens. Actuators, B 2022, 367, 132171.
|
[20] |
Ma Y.; Chen K. X.; Guo Z.-L.; Liu S. J.; Zhao Q.; Huang W.-Y. Acta Chim. Sinica 2020, 78, 23. (in Chinese)
doi: 10.6023/A19110407 |
(马云, 陈可欣, 郭则灵, 刘淑娟, 赵强, 黄维扬, 化学学报, 2020, 78, 23.)
doi: 10.6023/A19110407 |
|
[21] |
Li Y.; Zhang H.; Li M. New Chem. Mater. 2019, 47, 135.(in Chinese)
|
(李阳, 张辉, 李明, 化工新型材料, 2019, 47, 135.)
|
|
[22] |
Margar S. N.; Sekar N. Chemistry 2016, 327, 58.
|
[23] |
Cao D.; Liu Z.; Verwilst P.; Koo S.; Jangjili P.; Kim J. S.; Lin W. Chem. Rev. 2019, 119, 10403.
doi: 10.1021/acs.chemrev.9b00145 |
[24] |
Sun Q.; Sun D.; Song L.; Chen Z.; Chen Z.; Zhang W.; Qian J. Anal. Chem. 2016, 88, 3400.
doi: 10.1021/acs.analchem.6b00178 pmid: 26902836 |
[25] |
Bai H.; Qian J.; Tian H.; Pan W.; Zhang L.; Zhang W. Dyes Pigm. 2014, 103, 1.
doi: 10.1016/j.dyepig.2013.11.018 |
[26] |
Heo W.; Joo T. ChemPhysChem 2019, 20, 1448.
|
[27] |
Cui J.; Zang S.; Nie H.; Shen T.; Su S.; Jing J.; Zhang X. Sens. Actuators, B 2021, 171, 129069.
|
[28] |
Hao G.; Xu Z.; Li L. RSC Adv. 2018, 8, 22182.
doi: 10.1039/C8RA02095G |
[29] |
Thomsen A. B.; Kim S.; Aalbaek F.; Aalkjaer C.; Boedtkjer E. J. Cereb. Blood. Flow. Metab. 2014, 34, 161.
|
[30] |
Li M.; Fan J.; Li H.; Du J.; Long S.; Peng X. Biomaterials 2018, 164, 98.
doi: 10.1016/j.biomaterials.2018.02.044 |
[31] |
Wang Y.; Wang G.; Wang K.; Wang Z.; Guo Y.; Zhang H. Sens. Actuators, B 2018, 261, 210.
doi: 10.1016/j.snb.2018.01.132 |
[32] |
Wang Y.; Zhang C. Front. Immunol. 2019, 10, 1582.
doi: 10.3389/fimmu.2019.01582 |
[1] | 万义, 何江华, 张越涛. Lewis酸碱对催化极性烯烃单体精准聚合的研究进展★[J]. 化学学报, 2023, 81(9): 1215-1230. |
[2] | 车飞达, 赵晓茗, 张馨, 丁琪, 王昕, 李平, 唐波. 抑郁症相关活性分子的荧光成像★[J]. 化学学报, 2023, 81(9): 1255-1264. |
[3] | 武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英. 喹啉基粘度荧光探针的合成及其检测应用[J]. 化学学报, 2023, 81(8): 905-911. |
[4] | 吕鑫, 吴仪, 张勃然, 郭炜. 过氧化氢激活型近红外氟硼二吡咯光敏剂的设计、合成及光动力治疗研究[J]. 化学学报, 2023, 81(4): 359-370. |
[5] | 黄艳琴, 栗丽君, 杨书培, 张瑞, 刘兴奋, 范曲立, 黄维. HA-AuNPs/FDF用于透明质酸酶的高灵敏检测、肿瘤靶向细胞荧光成像和光疗[J]. 化学学报, 2023, 81(12): 1687-1694. |
[6] | 贺晓梦, 袁方, 张素雅, 张健健. 基于尼罗红类ONOO–近红外荧光探针的开发及其成像应用[J]. 化学学报, 2023, 81(11): 1515-1521. |
[7] | 刘玉玉, 陈捷锋, 邵振, 魏颖, 凌海峰, 解令海. 基于H型芴基小分子的双极性有机场效应晶体管存储器[J]. 化学学报, 2023, 81(11): 1508-1514. |
[8] | 孙丽, 王亚静, 李涛, 郭英姝, 张书圣. 金纳米笼探针用于线粒体成像和光热损伤细胞★[J]. 化学学报, 2023, 81(10): 1301-1310. |
[9] | 刘巴蒂, 王承俊, 钱鹰. 噻吩基氟硼二吡咯近红外光敏染料的合成、双光子荧光成像及光动力治疗研究[J]. 化学学报, 2022, 80(8): 1071-1083. |
[10] | 吴志芬, 柯建熙, 刘永升, 孙蓬明, 洪茂椿. 稀土近红外二区纳米荧光影像探针及其生物医学应用※[J]. 化学学报, 2022, 80(4): 542-552. |
[11] | 王其, 夏辉, 熊炎威, 张新敏, 蔡杰, 陈冲, 高逸聪, 陆峰, 范曲立. 调控供电子策略简易制备近红外二区有机小分子光学诊疗试剂[J]. 化学学报, 2022, 80(11): 1485-1493. |
[12] | 潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维. 透明质酸纳米材料在荧光/光声成像和光疗中的应用[J]. 化学学报, 2021, 79(9): 1097-1106. |
[13] | 任江波, 王蕾, 郭锐, 唐永和, 周红梅, 林伟英. 一种基于萘酰亚胺的检测细胞内pH值的荧光探针及其生物成像应用[J]. 化学学报, 2021, 79(1): 87-92. |
[14] | 李勇, 王栩, 解希雷, 张建, 唐波. 一氧化碳有机荧光探针和光控释放剂研究进展[J]. 化学学报, 2021, 79(1): 36-44. |
[15] | 魏廷文, 江龙, 陈亚辉, 陈小强. 光笼分子与材料研究进展[J]. 化学学报, 2021, 79(1): 58-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||