化学学报 ›› 2023, Vol. 81 ›› Issue (11): 1642-1662.DOI: 10.6023/A23050243 上一篇 下一篇
所属专题: 庆祝《化学学报》创刊90周年合辑
综述
闫英红a, 梁平兆a, 邹杨b, 袁林a,*(), 彭孝军b, 樊江莉b,*(), 张晓兵a,*()
投稿日期:
2023-05-20
发布日期:
2023-07-17
作者简介:
闫英红, 湖南大学化学化工学院在读硕士研究生, 导师是张晓兵教授与尹霞教授, 研究方向是近红外小分子荧光探针对肿瘤的成像与治疗. |
梁平兆, 湖南大学化学化工学院在读博士研究生, 导师是张晓兵教授. 研究方向是用于肿瘤治疗的可激活光学探针的设计与应用. |
邹杨, 大连理工大学化工学院在读博士研究生, 导师是樊江莉教授. 研究方向是有机光敏染料设计及其在肿瘤光疗中的应用. |
袁林, 博士, 现任湖南大学化学与化工学院教授、博士生导师. 主要从事荧光染料性能调控、小分子荧光探针设计及应用方向的研究. |
彭孝军, 博士, 大连理工大学化工学院教授, 中国科学院院士. 国家杰出青年基金获得者, 教育部“长江学者”特聘教授、国务院学科评议组成员. 主要从事精细化工研究, 包括高性能染料、荧光探针、光学材料, 在数码彩色打印等领域获得产业化应用. |
樊江莉, 博士, 现任大连理工大学化工学院教授, 博士生导师. 国家杰出青年基金获得者, 国家“万人计划”科技创新领军人才. 主要从事精细化工研究, 包括高性能染料、光学材料等, 在血液细胞分析系统等领域获得产业化应用. |
张晓兵, 博士, 湖南大学教授, 现任化学化工学院院长、化学生物传感与计量学国家重点实验室副主任. 长江学者特聘教授、国家杰出青年科学基金获得者、国家“万人计划”科技创新领军人才. 研究方向主要集中在高性能荧光探针开发及其生物医学应用. |
基金资助:
Yinghong Yana, Pingzhao Lianga, Yang Zoub, Lin Yuana(), Xiaojun Pengb, Jiangli Fanb(), Xiaobing Zhanga()
Received:
2023-05-20
Published:
2023-07-17
Contact:
*E-mail: About author:
Supported by:
文章分享
光动力治疗(Photodynamic Therapy, PDT)作为一种新兴的高效治疗方式, 具有毒性低、非侵入性和可控等优点, 已被广泛用于增生性皮肤疾病和肿瘤等疾病治疗. 然而, 已开发的PDT光敏剂在实际生物应用中仍面临诸多挑战, 如: 肿瘤乏氧环境降低治疗效果, 光敏剂靶向性差易造成对正常组织的损伤. 为了解决上述问题, 研究者们开发了许多有效改善有机光敏剂治疗效果的方法. 在此, 主要综述了有机光敏剂的结构与性能调控策略. 此外, 对有机光敏剂在抗肿瘤、抗菌治疗以及余辉成像中的应用进行了介绍. 最后, 对有机小分子光敏剂的设计策略进行了总结与展望, 以期促进该领域的发展.
闫英红, 梁平兆, 邹杨, 袁林, 彭孝军, 樊江莉, 张晓兵. 有机光敏剂结构与性能调控及其光诊疗应用★[J]. 化学学报, 2023, 81(11): 1642-1662.
Yinghong Yan, Pingzhao Liang, Yang Zou, Lin Yuan, Xiaojun Peng, Jiangli Fan, Xiaobing Zhang. Structure and Properties Regulation of Organic Photosensitizers and Application in Photodiagnosis and Treatment★[J]. Acta Chimica Sinica, 2023, 81(11): 1642-1662.
[1] |
Li H. D.; Kim D.; Yao Q. C.; Ge H. Y.; Chung J.; Fan J. L.; Wang J. Y.; Peng X. J.; Yoon J. Angew. Chem., Int. Ed. 2021, 60, 17268.
doi: 10.1002/anie.v60.32 |
[2] |
Luby B. M.; Walsh C. D.; Zheng G. Angew. Chem., Int. Ed. 2019, 58, 2558.
doi: 10.1002/anie.v58.9 |
[3] |
Zhao X. Z.; Liu J. P.; Fan J. L.; Chao H.; Peng X. J. Chem. Soc. Rev. 2021, 50, 4185.
doi: 10.1039/D0CS00173B |
[4] |
Lucky S. S.; Soo K. C.; Zhang Y. Chem. Rev. 2015, 115, 1990.
doi: 10.1021/cr5004198 |
[5] |
Li S. K.; Zou Q. L.; Li Y. X.; Yuan C. Q.; Xing R. R.; Yan X. H. J. Am. Chem. Soc. 2018, 140, 10794.
doi: 10.1021/jacs.8b04912 |
[6] |
Zhu L.; Luo M.; Zhang Y.; Fang F.; Li M.; An F.; Zhao D.; Zhang J. Coord. Chem. Rev. 2023, 475, 214875. (in Chinese)
doi: 10.1016/j.ccr.2022.214875 |
[7] |
Lü X.; Wu Y.; Zhang B. R.; Guo W. Acta Chim. Sinica 2023, 81, 359. (in Chinese)
doi: 10.6023/A22120487 |
( 吕鑫, 吴仪, 张勃然, 郭炜, 化学学报, 2023, 81, 359.)
doi: 10.6023/A22120487 |
|
[8] |
Li X.; Lee S.; Yoon J. Chem. Soc. Rev. 2018, 47, 1174.
doi: 10.1039/C7CS00594F |
[9] |
Dang J.; He H.; Chen D.; Yin L. Biomater. Sci. 2017, 5, 1500.
doi: 10.1039/C7BM00392G |
[10] |
Nguyen V. N.; Qi S.; Kim S.; Kwon N.; Kim G.; Yim Y.; Park S.; Yoon J. J. Am. Chem. Soc. 2019, 141, 16243.
doi: 10.1021/jacs.9b09220 |
[11] |
Xu K.; Zhang T.; Shao J. J.; Dong X. C. Chinese Journal of Lasers 2023, 50, 0307202. (in Chinese)
doi: 10.3788/CJL |
( 许康, 张甜, 邵进军, 董晓臣, 中国激光, 2023, 50, 0307202.)
|
|
[12] |
Qi G. B.; Hu F.; Kenry; Shi L. L.; Wu M.; Liu B. Angew. Chem., Int. Ed. 2019, 58, 16229.
doi: 10.1002/anie.v58.45 |
[13] |
Yao C.; Wang W.; Wang P.; Zhao M.; Li X.; Zhang F. Adv. Mater. 2018, 30, 1704833.
doi: 10.1002/adma.v30.7 |
[14] |
Wang H.; Han X.; Dong Z.; Xu J.; Wang J.; Liu Z. Adv. Funct. Mater. 2019, 29, 1902440.
doi: 10.1002/adfm.v29.29 |
[15] |
Li X.; Chen L.; Huang M.; Zeng S.; Zheng J.; Peng S.; Wang Y.; Cheng H.; Li S. Asian J. Pharm. Sci. 2023, 18, 100775.
|
[16] |
Allison R. R.; Sibata C. H. Photodiagn. Photodyn. 2010, 7, 61.
doi: 10.1016/j.pdpdt.2010.02.001 |
[17] |
Yao Q.; Fan J.; Long S.; Zhao X.; Li H.; Du J.; Shao K.; Peng X. Chem 2022, 8, 197.
doi: 10.1016/j.chempr.2021.10.006 |
[18] |
Liu Z.; Cao T.; Xue Y.; Li M.; Wu M.; Engle J. W.; He Q.; Cai W.; Lan M.; Zhang W. Angew. Chem., Int. Ed. 2020, 59, 3711.
doi: 10.1002/anie.v59.9 |
[19] |
Zhou Z.; Song J.; Nie L.; Chen X. Chem. Soc. Rev. 2016, 45, 6597.
doi: 10.1039/C6CS00271D |
[20] |
Chinna Ayya Swamy P.; Sivaraman G.; Priyanka R. N.; Raja S. O.; Ponnuvel K.; Shanmugpriya J.; Gulyani A. Coord. Chem. Rev. 2020, 411, 213233.
doi: 10.1016/j.ccr.2020.213233 |
[21] |
Han K.; Wang S. B.; Lei Q.; Zhu J. Y.; Zhang X. Z. ACS Nano 2015, 9, 10268.
doi: 10.1021/acsnano.5b04243 |
[22] |
Turan I. S.; Yildiz D.; Turksoy A.; Gunaydin G.; Akkaya E. U. Angew. Chem., Int. Ed. 2016, 55, 2875.
doi: 10.1002/anie.v55.8 |
[23] |
Huang L.; Li Z.; Zhao Y.; Zhang Y.; Wu S.; Zhao J.; Han G. J. Am. Chem. Soc. 2016, 138, 14586.
pmid: 27786443 |
[24] |
Zou J.; Yin Z.; Ding K.; Tang Q.; Li J.; Si W.; Shao J.; Zhang Q.; Huang W.; Dong X. ACS Appl. Mater. Interfaces. 2017, 9, 32475.
doi: 10.1021/acsami.7b07569 |
[25] |
Zhai W.; Zhang Y.; Liu M.; Zhang H.; Zhang J.; Li C. Angew. Chem., Int. Ed. 2019, 58, 16601.
doi: 10.1002/anie.v58.46 |
[26] |
Karges J.; Basu U.; Blacque O.; Chao H.; Gasser G. Angew. Chem., Int. Ed. 2019, 58, 14334.
doi: 10.1002/anie.v58.40 |
[27] |
Wen K.; Tan H.; Peng Q.; Chen H.; Ma H.; Wang L.; Peng A.; Shi Q.; Cai X.; Huang H. Adv. Mater. 2022, 34, 2108146.
doi: 10.1002/adma.v34.7 |
[28] |
Ma D. D.; Bian H.; Long S. R.; Zhou P. W.; Tian R. S.; Wu Y.N.; Ge H. Y.; Li M. L.; Du J. J.; Fan J. L.; Zhang Y. K.; Peng X. J. Sci. China Chem. 2022, 65, 563.
doi: 10.1007/s11426-021-1179-7 |
[29] |
Yao S.; Chen Y.; Ding W.; Xu F.; Liu Z.; Li Y.; Wu Y.; Li S.; He W.; Guo Z. Chem. Sci. 2023, 14, 1234.
doi: 10.1039/D2SC05982G |
[30] |
Nguyen V.-N.; Yan Y.; Zhao J.; Yoon J. Acc. Chem. Res. 2021, 54, 207.
doi: 10.1021/acs.accounts.0c00606 |
[31] |
Filatov M. A. Ogr. Biomol. Chem. 2020, 18, 10.
|
[32] |
Filatov M. A.; Karuthedath S.; Polestshuk P. M.; Savoie H.; Flanagan K. J.; Sy C.; Sitte E.; Telitchko M.; Laquai F.; Boyle R. W.; Senge M. O. J. Am. Chem. Soc. 2017, 139, 6282.
doi: 10.1021/jacs.7b00551 |
[33] |
Lv M.; Yu Y.; Sandoval-Salinas M. E.; Xu J. H.; Lei Z. H.; Casanova D.; Yang Y. J.; Chen J. Q. Angew. Chem., Int. Ed. 2020, 59, 22179.
doi: 10.1002/anie.v59.49 |
[34] |
Zhao X.; Yao Q.; Long S.; Chi W.; Yang Y.; Tan D.; Liu X.; Huang H.; Sun W.; Du J.; Fan J. L.; Peng X. J. J. Am. Chem. Soc. 2021, 143, 12345.
doi: 10.1021/jacs.1c06275 |
[35] |
Miao J.; Huo Y.; Yao G.; Feng Y.; Weng J.; Zhao W.; Guo W. Angew. Chem., Int. Ed. 2022, 61, e202201815.
doi: 10.1002/anie.v61.25 |
[36] |
Yuan Z.; Yu S.; Cao F.; Mao Z.; Gao C.; Ling J. Polym. Chem. 2018, 9, 2124.
doi: 10.1039/C8PY00289D |
[37] |
Martins S.; Farinha J. P. S.; Baleizão C.; Berberan-Santos M. N. Chem. Commun. 2014, 50, 3317.
doi: 10.1039/c3cc48293f |
[38] |
Kim S.; Zhou Y.; Tohnai N.; Nakatsuji H.; Matsusaki M.; Fujitsuka M.; Miyata M.; Majima T. Chem. Eur. J. 2018, 24, 636.
doi: 10.1002/chem.v24.3 |
[39] |
Zou J.; Li L.; Zhu J.; Li X.; Yang Z.; Huang W.; Chen X. Adv. Mater. 2021, 33, 2103627.
doi: 10.1002/adma.v33.44 |
[40] |
Zhao P.; Wang Z.; Wang Y.; Wu Z.; Guo Y.; Wang C.; Fang X.; Qu Z.; Wang H.; Zhao G. Dyes Pigments 2023, 214, 111214.
doi: 10.1016/j.dyepig.2023.111214 |
[41] |
Likhtenstein G. I.; Ishii K.; Nakatsuji S. I. Photochem. Photobiol. 2007, 83, 871.
pmid: 17645658 |
[42] |
Cui X.; Zhang Z.; Yang Y.; Li S.; Lee C.-S. Exploration 2022, 2, 20210264.
doi: 10.1002/exp2.v2.2 |
[43] |
Wang Z.; Zhao J.; Barbon A.; Toffoletti A.; Liu Y.; An Y.; Xu L.; Karatay A.; Yaglioglu H. G.; Yildiz E. A.; Hayvali M. J. Am. Chem. Soc. 2017, 139, 7831.
doi: 10.1021/jacs.7b02063 |
[44] |
Wang Z.; Gao Y.; Hussain M.; Kundu S.; Rane V.; Hayvali M.; Yildiz E. A.; Zhao J.; Yaglioglu H. G.; Das R.; Luo L.; Li J. F. Chem. Eur. J. 2018, 24, 18663.
doi: 10.1002/chem.v24.70 |
[45] |
Jiao L.; Song F.; Cui J.; Peng X. Chem. Commun. 2018, 54, 9198.
doi: 10.1039/C8CC04582H |
[46] |
Xu F.; Ge H.; Xu N.; Yang C.; Yao Q.; Long S.; Sun W.; Fan J.; Xu X.; Peng X. Sci. China Chem. 2021, 64, 488.
doi: 10.1007/s11426-020-9922-3 |
[47] |
Zhang C.; Zhao Y.; Li D.; Liu J.; Han H.; He D.; Tian X.; Li S.; Wu J.; Tian Y. Chem. Commun. 2019, 55, 1450.
doi: 10.1039/C8CC09230C |
[48] |
Zheng Z.; Liu H.; Zhai S.; Zhang H.; Shan G.; Kwok R. T. K.; Ma C.; Sung H. H. Y.; Williams I. D.; Lam J. W. Y.; Wong K. S.; Hu X. L.; Tang B. Z. Chem. Sci. 2020, 11, 2494.
doi: 10.1039/c9sc06441a pmid: 34084415 |
[49] |
Nguyen V.-N.; Yim Y.; Kim S.; Ryu B.; Swamy K. M. K.; Kim G.; Kwon N.; Kim C.-Y.; Park S.; Yoon J. Angew. Chem., Int. Ed. 2020, 59, 8957.
doi: 10.1002/anie.v59.23 |
[50] |
Wu W.; Bazan G. C.; Liu B. Chem 2017, 2, 760.
doi: 10.1016/j.chempr.2017.05.002 |
[51] |
Wu W.; Mao D.; Hu F.; Xu S.; Chen C.; Zhang C.-J.; Cheng X.; Yuan Y.; Ding D.; Kong D.; Liu B. Adv. Mater. 2017, 29, 1700548.
doi: 10.1002/adma.v29.33 |
[52] |
Jia J.-H.; Liang D.; Yu R.; Chen X.-L.; Meng L.; Chang J.-F.; Liao J.-Z.; Yang M.; Li X.-N.; Lu C.-Z. Chem. Mater. 2020, 32, 620.
doi: 10.1021/acs.chemmater.9b04585 |
[53] |
Wu W.; Mao D.; Xu S.; Kenry; Hu F.; Li X.; Kong D.; Liu B. Chem 2018, 4, 1937.
doi: 10.1016/j.chempr.2018.06.003 |
[54] |
Wang S.; Wu W.; Manghnani P.; Xu S.; Wang Y.; Goh C. C.; Ng L. G.; Liu B. ACS Nano 2019, 13, 3095.
doi: 10.1021/acsnano.8b08398 |
[55] |
Cai Y.; Wei Z.; Song C.; Tang C.; Han W.; Dong X. Chem. Soc. Rev. 2019, 48, 22.
doi: 10.1039/c8cs00494c pmid: 30444505 |
[56] |
Xu S.; Yuan Y.; Cai X.; Zhang C.-J.; Hu F.; Liang J.; Zhang G.; Zhang D.; Liu B. Chem. Sci. 2015, 6, 5824.
doi: 10.1039/C5SC01733E |
[57] |
Wan Y.; Lu G.; Wei W.-C.; Huang Y.-H.; Li S.; Chen J.-X.; Cui X.; Xiao Y.-F.; Li X.; Liu Y.; Meng X.-M.; Wang P; Xie H.-Y.; Zhang J.; Wong K.-T.; Lee C.-S. ACS Nano 2020, 14, 9917.
doi: 10.1021/acsnano.0c02767 |
[58] |
Li D.; Chen X.; Wang D.; Wu H.; Wen H.; Wang L.; Jin Q.; Wang D.; Ji J.; Tang B. Z. Biomaterials 2022, 283, 121476.
doi: 10.1016/j.biomaterials.2022.121476 |
[59] |
Li M.; Sun W.; Tian R.; Cao J.; Tian Y.; Gurram B.; Fan J.; Peng X. Biomaterials 2021, 269, 120532.
doi: 10.1016/j.biomaterials.2020.120532 |
[60] |
Li Y.; Ma T.; Jiang H.; Li W.; Tian D.; Zhu J.; Li Z. Angew. Chem., Int. Ed. 2022, 61, e202203093.
doi: 10.1002/anie.v61.24 |
[61] |
Gui C.; Zhao E.; Kwok R. T. K.; Leung A. C. S.; Lam J. W. Y.; Jiang M.; Deng H.; Cai Y.; Zhang W.; Su H.; Tang B. Z. Chem. Sci. 2017, 8, 1822.
doi: 10.1039/C6SC04947H |
[62] |
Xiao Y.-F.; An F.-F.; Chen J.-X.; Yu J.; Tao W.-W.; Yu Z.; Ting R.; Lee C.-S.; Zhang X.-H. Small 2019, 15, 1903121.
doi: 10.1002/smll.v15.38 |
[63] |
McKenzie L. K.; Bryant H. E.; Weinstein J. A. Coord. Chem. Rev. 2019, 379, 2.
doi: 10.1016/j.ccr.2018.03.020 |
[64] |
Xiao Y.-F.; Chen J.-X.; Li S.; Tao W.-W.; Tian S.; Wang K.; Cui X.; Huang Z.; Zhang X.-H.; Lee C.-S. Chem. Sci. 2020, 11, 888.
doi: 10.1039/C9SC05817F |
[65] |
Wang S.; Chen H.; Liu J.; Chen C.; Liu B. Adv. Funct. Mater. 2020, 30, 2002546.
doi: 10.1002/adfm.v30.30 |
[66] |
Piao W.; Hanaoka K.; Fujisawa T.; Takeuchi S.; Komatsu T.; Ueno T.; Terai T.; Tahara T.; Nagano T.; Urano Y. J. Am. Chem. Soc. 2017, 139, 13713.
doi: 10.1021/jacs.7b05019 pmid: 28872304 |
[67] |
Chen Q.; Feng L.; Liu J.; Zhu W.; Dong Z.; Wu Y.; Liu Z. Adv. Mater. 2016, 28, 7129.
doi: 10.1002/adma.v28.33 |
[68] |
Sun J.; Du K.; Diao J.; Cai X.; Feng F.; Wang S. Angew. Chem., Int. Ed. 2020, 59, 12122.
doi: 10.1002/anie.v59.29 |
[69] |
Zhang C.; Zhao K.; Bu W.; Ni D.; Liu Y.; Feng J.; Shi J. Angew. Chem., Int. Ed. 2015, 54, 1770.
doi: 10.1002/anie.v54.6 |
[70] |
Li M.; Xia J.; Tian R.; Wang J.; Fan J.; Du J.; Long S.; Song X.; Foley J. W.; Peng X. J. Am. Chem. Soc. 2018, 140, 14851.
doi: 10.1021/jacs.8b08658 |
[71] |
Li M.; Shao Y.; Kim J. H.; Pu Z.; Zhao X.; Huang H.; Xiong T.; Kang Y.; Li G.; Shao K.; Fan J. L.; Foley J. W.; Kim J. S.; Peng X. J. J. Am. Chem. Soc. 2020, 142, 5380.
doi: 10.1021/jacs.0c00734 |
[72] |
Teng K.-X.; Chen W.-K.; Niu L.-Y.; Fang W.-H.; Cui G.; Yang Q.-Z. Angew. Chem., Int. Ed. 2021, 60, 19912.
doi: 10.1002/anie.v60.36 |
[73] |
Teng K.-X.; Niu L.-Y.; Yang Q.-Z. Chem. Sci. 2022, 13, 5951.
doi: 10.1039/D2SC01469F |
[74] |
Teng K.-X.; Niu L.-Y.; Xie N.; Yang Q.-Z. Nat. Commun. 2022, 13, 6179.
doi: 10.1038/s41467-022-33924-3 |
[75] |
Chen W.; Wang Z.; Tian M.; Hong G.; Wu Y.; Sui M.; Chen M.; An J.; Song F.; Peng X. J. Am. Chem. Soc. 2023, 145, 8130.
doi: 10.1021/jacs.3c01042 |
[76] |
Kuang S.; Sun L.; Zhang X.; Liao X.; Rees T. W.; Zeng L.; Chen Y.; Zhang X.; Ji L.; Chao H. Angew. Chem., Int. Ed. 2020, 59, 20697.
doi: 10.1002/anie.v59.46 |
[77] |
Teng K.-X.; Niu L.-Y.; Yang Q.-Z. J. Am. Chem. Soc. 2023, 145, 4081.
doi: 10.1021/jacs.2c11868 |
[78] |
Vankayala R.; Kuo C.-L.; Nuthalapati K.; Chiang C.-S.; Hwang K. C. Adv. Funct. Mater. 2015, 25, 5934.
doi: 10.1002/adfm.v25.37 |
[79] |
Kuthala N.; Vankayala R.; Li Y.-N.; Chiang C.-S.; Hwang K. C. Adv. Mater. 2017, 29, 1700850.
doi: 10.1002/adma.v29.31 |
[80] |
Ho L.-C.; Wu W.-C.; Chang C.-Y.; Hsieh H.-H.; Lee C.-H.; Chang H.-T. Anal. Chem. 2015, 87, 4925.
doi: 10.1021/acs.analchem.5b00569 |
[81] |
Fang J.; Islam W.; Maeda H. Adv. Drug Delivery. Rev. 2020, 157, 142.
doi: 10.1016/j.addr.2020.06.005 |
[82] |
Zhao R.; Wang B.; Yang X.; Xiao Y.; Wang X.; Shao C.; Tang R. Angew. Chem., Int. Ed. 2016, 55, 5225.
doi: 10.1002/anie.v55.17 |
[83] |
Yang M.; Deng J.; Guo D.; Zhang J.; Yang L.; Wu F. Ogr. Biomol. Chem. 2019, 17, 5367.
|
[84] |
Chu J. C. H.; Wong C. T. T.; Ng D. K. P. Angew. Chem., Int. Ed. 2023, 62, e202214473.
doi: 10.1002/anie.v62.2 |
[85] |
Chu J. C. H.; Fong W.-P.; Wong C. T. T.; Ng D. K. P. J. Med. Chem. 2021, 64, 2064.
doi: 10.1021/acs.jmedchem.0c01677 |
[86] |
Lovell J. F.; Liu T. W. B.; Chen J.; Zheng G. Chem. Rev. 2010, 110, 2839.
doi: 10.1021/cr900236h |
[87] |
Gamcsik M. P.; Kasibhatla M. S.; Teeter S. D.; Colvin O. M. Biomarkers 2012, 17, 671.
doi: 10.3109/1354750X.2012.715672 |
[88] |
Hu F.; Yuan Y.; Mao D.; Wu W.; Liu B. Biomaterials 2017, 144, 53.
doi: 10.1016/j.biomaterials.2017.08.018 |
[89] |
Li X.; Kolemen S.; Yoon J.; Akkaya E. U. Adv. Funct. Mater. 2017, 27, 1604053.
doi: 10.1002/adfm.v27.5 |
[90] |
Xiong H.; Zhou K. J.; Yan Y. F.; Miller J. B.; Siegwart D. J. ACS Appl. Mater. Interfaces 2018, 10, 16335.
doi: 10.1021/acsami.8b04710 |
[91] |
Yuan B.; Wang H.; Xu J.-F.; Zhang X. ACS Appl. Mater. Interfaces 2020, 12, 26982.
doi: 10.1021/acsami.0c07471 |
[92] |
Chen Y.; Zhao X.; Xiong T.; Du J.; Sun W.; Fan J.; Peng X. Sci. Chi. Chem. 2021, 64, 808.
|
[93] |
Wei X.; Zhang C.; He S.; Huang J.; Huang J.; Liew S. S.; Zeng Z.; Pu K. Angew. Chem., Int. Ed. 2022, 61, e202202966.
doi: 10.1002/anie.v61.26 |
[94] |
Xu F.; Li H.; Yao Q.; Ge H.; Fan J.; Sun W.; Wang J.; Peng X. Chem. Sci. 2019, 10, 10586.
doi: 10.1039/C9SC03355F |
[95] |
Tam L. K. B.; Chu J. C. H.; He L.; Yang C.; Han K.-C.; Cheung P. C. K.; Ng D. K. P.; Lo P.-C. J. Am. Chem. Soc. 2023, 145, 7361.
doi: 10.1021/jacs.2c13732 |
[96] |
Chen K.; Zhang R.; Wang Z.; Zhang W.; Tang B. Z. Adv. Opt. Mater. 2020, 8, 1901433.
doi: 10.1002/adom.v8.2 |
[97] |
Bian H.; Ma D.; Zhang X.; Xin K.; Yang Y.; Peng X.; Xiao Y. Small 2021, 17, 2100398.
doi: 10.1002/smll.v17.21 |
[98] |
Lu Y.; Xu F.; Wang Y.; Shi C.; Sha Y.; He G.; Yao Q.; Shao K.; Sun W.; Du J.; Fan J. L.; Peng X. J. Biomaterials 2021, 278, 121167.
doi: 10.1016/j.biomaterials.2021.121167 |
[99] |
Liu H.-W.; Hu X.-X.; Li K.; Liu Y.; Rong Q.; Zhu L.; Yuan L.; Qu F.-L.; Zhang X.-B.; Tan W. Chem. Sci. 2017, 8, 7689.
doi: 10.1039/C7SC03454G |
[100] |
Yuan J.; Zhou Q.-H.; Xu S.; Zuo Q.-P.; Li W.; Zhang X.-X.; Ren T.-B.; Yuan L.; Zhang X.-B. Angew. Chem., Int. Ed. 2022, 61, e202206169.
doi: 10.1002/anie.v61.33 |
[101] |
Li Y.; Zhao Z.; Zhang J.; Kwok R. T. K.; Xie S.; Tang R.; Jia Y.; Yang J.; Wang L.; Lam J. W. Y.; Zheng W.; Jiang X.; Tang B. Z. Adv. Funct. Mater. 2018, 28, 1804632.
doi: 10.1002/adfm.v28.42 |
[102] |
Wu M.-Y.; Gu M.; Leung J.-K.; Li X.; Yuan Y.; Shen C.; Wang L.; Zhao E.; Chen S. Small 2021, 17, 2101770.
doi: 10.1002/smll.v17.30 |
[103] |
Li J.; Pu K. Chem. Soc. Rev. 2019, 48, 38.
doi: 10.1039/C8CS00001H |
[104] |
Xu Y.; Yang W.; Yao D.; Bian K.; Zeng W.; Liu K.; Wang D.; Zhang B. Chem. Sci. 2020, 11, 419.
doi: 10.1039/c9sc04901k pmid: 32190262 |
[105] |
Cui D.; Xie C.; Li J.; Lyu Y.; Pu K. Adv. Healthcare Mater. 2018, 7, 1800329.
doi: 10.1002/adhm.v7.18 |
[106] |
Miao Q.; Xie C.; Zhen X.; Lyu Y.; Duan H.; Liu X.; Jokerst J. V.; Pu K. Nat. Biotechnol. 2017, 35, 1102.
doi: 10.1038/nbt.3987 |
[107] |
Liu Y.; Teng L.; Lou X.-F.; Zhang X.-B.; Song G. J. Am. Chem. Soc. 2023, 145, 5134.
doi: 10.1021/jacs.2c11466 |
[1] | 车飞达, 赵晓茗, 张馨, 丁琪, 王昕, 李平, 唐波. 抑郁症相关活性分子的荧光成像★[J]. 化学学报, 2023, 81(9): 1255-1264. |
[2] | 张媛, 郑贝宁, 符美春, 冯守华. 尖晶石氧化物在肿瘤诊疗应用领域研究进展★[J]. 化学学报, 2023, 81(8): 949-954. |
[3] | 武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英. 喹啉基粘度荧光探针的合成及其检测应用[J]. 化学学报, 2023, 81(8): 905-911. |
[4] | 汤乔伟, 蔡小青, 殷大鹏, 孔华庭, 张祥志, 张继超, 闫庆龙, 诸颖, 樊春海. 基于点击化学的同步辐射X射线成像标签★[J]. 化学学报, 2023, 81(5): 441-444. |
[5] | 吕鑫, 吴仪, 张勃然, 郭炜. 过氧化氢激活型近红外氟硼二吡咯光敏剂的设计、合成及光动力治疗研究[J]. 化学学报, 2023, 81(4): 359-370. |
[6] | 黄艳琴, 栗丽君, 杨书培, 张瑞, 刘兴奋, 范曲立, 黄维. HA-AuNPs/FDF用于透明质酸酶的高灵敏检测、肿瘤靶向细胞荧光成像和光疗[J]. 化学学报, 2023, 81(12): 1687-1694. |
[7] | 贺晓梦, 袁方, 张素雅, 张健健. 基于尼罗红类ONOO–近红外荧光探针的开发及其成像应用[J]. 化学学报, 2023, 81(11): 1515-1521. |
[8] | 孙丽, 王亚静, 李涛, 郭英姝, 张书圣. 金纳米笼探针用于线粒体成像和光热损伤细胞★[J]. 化学学报, 2023, 81(10): 1301-1310. |
[9] | 宋思睿, 唐永和, 孙良广, 郭锐, 姜冠帆, 林伟英. 基于香豆素荧光团的新型极性检测荧光探针的开发及其成像应用[J]. 化学学报, 2022, 80(9): 1217-1222. |
[10] | 孙宏顺, 周进, 刘成, 陈旭, 杜怡璟, 李玉龙, 蒋蕻, 王建强, 宋喆, 郭成. 一类肝靶向含钆大环磁共振对比剂的设计、制备与性能表征[J]. 化学学报, 2022, 80(9): 1250-1255. |
[11] | 刘巴蒂, 王承俊, 钱鹰. 噻吩基氟硼二吡咯近红外光敏染料的合成、双光子荧光成像及光动力治疗研究[J]. 化学学报, 2022, 80(8): 1071-1083. |
[12] | 胡婕, 田善喜. 低能离子-分子反应动力学的研究进展※[J]. 化学学报, 2022, 80(4): 535-541. |
[13] | 许宁, 乔庆龙, 刘晓刚, 徐兆超. 基于抑制扭转的分子内电荷转移(TICT)提升有机小分子荧光染料亮度及光稳定性※[J]. 化学学报, 2022, 80(4): 553-562. |
[14] | 王其, 夏辉, 熊炎威, 张新敏, 蔡杰, 陈冲, 高逸聪, 陆峰, 范曲立. 调控供电子策略简易制备近红外二区有机小分子光学诊疗试剂[J]. 化学学报, 2022, 80(11): 1485-1493. |
[15] | 潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维. 透明质酸纳米材料在荧光/光声成像和光疗中的应用[J]. 化学学报, 2021, 79(9): 1097-1106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||