化学学报 ›› 2023, Vol. 81 ›› Issue (11): 1515-1521.DOI: 10.6023/A23050225 上一篇 下一篇
研究论文
投稿日期:
2023-05-13
发布日期:
2023-08-14
基金资助:
Xiaomeng He, Fang Yuan, Suya Zhang, Jianjian Zhang()
Received:
2023-05-13
Published:
2023-08-14
Contact:
*E-mail: Supported by:
文章分享
过氧亚硝酸根(ONOO–)在氧化应激和炎症过程中的生成与细胞损伤、炎症反应和免疫调节等密切相关, 因此, 开发高灵敏且高度选择性的ONOO–检测方法对于深入理解疾病发生和发展机制、提高疾病的早期诊断和治疗水平具有极其重要意义. 设计合成了一种选择性检测ONOO–的新型荧光探针NR-Pro. 该探针通过使用烷基链将2-羟基尼罗红衍生物(NR-OH)与4,4'-氮杂二基二苯酚基团有机结合, 在ONOO–作用下, 释放出近红外染料NR-OH. 实验研究表明, 该探针在658 nm处对ONOO–表现出显著的“OFF-ON”型荧光信号响应, 且对ONOO–浓度在0~10 μmol/L范围内呈现良好的线性关系, 检出限低至17.7 nmol/L. 这项研究进一步证实了NR-Pro探针在检测RAW264.7细胞中外源和内源ONOO–方面具有优良的成像能力, 这为早期诊断和治疗疾病提供了新的思路.
贺晓梦, 袁方, 张素雅, 张健健. 基于尼罗红类ONOO–近红外荧光探针的开发及其成像应用[J]. 化学学报, 2023, 81(11): 1515-1521.
Xiaomeng He, Fang Yuan, Suya Zhang, Jianjian Zhang. Development of a Near-Infrared Fluorescent Probe Based on Nile Red for ONOO– and Its Imaging Applications[J]. Acta Chimica Sinica, 2023, 81(11): 1515-1521.
[1] |
Nathan C.; Cunningham-Bussel A. Nat. Rev. Immunol. 2013, 13, 349.
doi: 10.1038/nri3423 pmid: 23618831 |
[2] |
Dickinson B. C.; Chang C. J. Nat. Chem. Biol. 2011, 7, 504.
doi: 10.1038/nchembio.607 pmid: 21769097 |
[3] |
Liu Y.; Teng L.; Lyu Y.; Song G.; Zhang X. B.; Tan W. Nat. Commun. 2022, 13, 2216.
doi: 10.1038/s41467-022-29894-1 |
[4] |
Wang Y.; Shi L.; Ye Z.; Guan K.; Teng L.; Wu J.; Yin X.; Song G.; Zhang X. B. Nano. Lett. 2020, 20, 176.
doi: 10.1021/acs.nanolett.9b03556 |
[5] |
Ferrer-Sueta G.; Campolo N.; Trujillo M.; Bartesaghi S.; Carballal S.; Romero N.; Alvarez B.; Radi R. Chem. Rev. 2018, 118, 1338.
doi: 10.1021/acs.chemrev.7b00568 pmid: 29400454 |
[6] |
Radi R. J. Biol. Chem. 2013, 288, 26464.
doi: 10.1074/jbc.R113.472936 |
[7] |
De Armas M. I.; Esteves R.; Viera N.; Reyes A. M.; Mastrogiovanni M.; Alegria T. G. P.; Netto L. E. S.; Tortora V.; Radi R.; Trujillo M. Free Radic. Biol. Med. 2019, 130, 369.
doi: 10.1016/j.freeradbiomed.2018.10.451 |
[8] |
Graham P. M.; Li J. Z.; Dou X.; Zhu H.; Misra H. P.; Jia Z.; Li Y. Mol. Cell Biochem. 2013, 378, 291.
doi: 10.1007/s11010-013-1620-z pmid: 23529546 |
[9] |
Li X.; Tao R. R.; Hong L. J.; Cheng J.; Jiang Q.; Lu Y. M.; Liao M. H.; Ye W. F.; Lu N. N.; Han F.; Hu Y. Z.; Hu Y. H. J. Am. Chem. Soc. 2015, 137, 12296.
doi: 10.1021/jacs.5b06865 |
[10] |
Islam M. T. Neurol. Res. 2017, 39, 73.
doi: 10.1080/01616412.2016.1251711 |
[11] |
Munn L. L. WIREs Syst. Biol. Med. 2017, 9, e1382.
doi: 10.1002/wsbm.2017.9.issue-4 |
[12] |
Xie X.; Tang F.; Liu G.; Li Y.; Su X.; Jiao X.; Wang X.; Tang B. Anal. Chem. 2018, 90, 11629.
doi: 10.1021/acs.analchem.8b03207 |
[13] |
Bartesaghi S.; Radi R. Redox Biol. 2018, 14, 618.
doi: S2213-2317(17)30621-3 pmid: 29154193 |
[14] |
Hu J. S.; Shao C.; Wang X.; Di X.; Xue X.; Su Z.; Zhao J.; Zhu H. L.; Liu H. K.; Qian Y. Adv. Sci. 2019, 6, 1900341.
doi: 10.1002/advs.v6.15 |
[15] |
Gao L.; Wang W.; Wang X.; Yang F.; Xie L.; Shen J.; Brimble M. A.; Xiao Q.; Yao S. Q. Chem. Soc. Rev. 2021, 50, 1219.
doi: 10.1039/D0CS00115E |
[16] |
Zhang S. Y.; Ning L. L.; Song Z. H.; Zhao X. Y.; Guan F.; Yang X. F.; Zhang J. J. Anal. Chem. 2022, 94, 5805.
doi: 10.1021/acs.analchem.1c05184 pmid: 35380780 |
[17] |
Zhao X. Y.; Ning L. L.; Zhou X. M.; Song Z. H.; Zhang J. J.; Guan F.; Yang X. F. Anal. Chem. 2021, 93, 4894.
doi: 10.1021/acs.analchem.0c05081 |
[18] |
Wu W.; Zhang C.; Rees T. W.; Liao X.; Yan X.; Chen Y.; Ji L.; Chao H. Anal. Chem. 2020, 92, 6003.
doi: 10.1021/acs.analchem.0c00259 |
[19] |
Ueno T.; Nagano T. Nat. Methods 2011, 8, 642.
doi: 10.1038/nmeth.1663 |
[20] |
Chan J.; Dodani S. C.; Chang C. J. Nat. Chem. 2012, 4, 973.
doi: 10.1038/nchem.1500 |
[21] |
Zhang S.-Y.; Zhang J.-J. Fine Chem. 2020, 37, 2229. (in Chinese)
|
( 张素雅, 张健健, 精细化工, 2020, 37, 2229.)
|
|
[22] |
Li Y.; Ning L. L.; Yuan F.; Zhang T.; Zhang J. J.; Xu Z. G.; Yang X. F. Anal. Chem. 2020, 92, 5733.
doi: 10.1021/acs.analchem.9b04806 pmid: 32193934 |
[23] |
Zhao X. Y.; Ding M. B.; Ning L. L.; Yuan F.; Li J. C.; Guo Y.; Mu Y. G.; Zhang J. J. Acta Mater. Med. 2022, 1, 476.
|
[24] |
Yuan F.; He X. M.; Lu Y. R.; Ning L. L.; Zhao X. Y.; Zhang S. Y.; Guan F.; Guo Y.; Zhang J. J. Anal. Chem. 2023, 95, 6931.
doi: 10.1021/acs.analchem.3c00230 |
[25] |
Lv X.; Wu Y.; Zhang B.-R.; Guo W. Acta Chim. Sinica 2023, 81, 359. (in Chinese)
doi: 10.6023/A22120487 |
( 吕鑫, 吴仪, 张勃然, 郭炜, 化学学报, 2023, 81, 359.)
doi: 10.6023/A22120487 |
|
[26] |
Li X.; Liang X.; Yin J.; Lin W. Chem. Soc. Rev. 2021, 50, 102.
doi: 10.1039/D0CS00896F |
[27] |
Lu J.; Li Z.; Gao Q.; Tan J.; Sun Z.; Chen L.; You J. Anal. Chem. 2021, 93, 3426.
doi: 10.1021/acs.analchem.0c04512 |
[28] |
Wang N.; Wang H.; Zhang J.; Ji X.; Su H.; Liu J.; Wang J.; Zhao W. Chin. Chem. Lett. 2022, 33, 1584.
doi: 10.1016/j.cclet.2021.09.046 |
[29] |
Cui J.; Zang S.; Nie H.; Shen T.; Su S.; Jing J.; Zhang X. Sensor. Actuat. B-Chem. 2021, 328, 129069.
doi: 10.1016/j.snb.2020.129069 |
[30] |
Chen S.; Vurusaner B.; Pena S.; Thu C. T.; Mahal L. K.; Fisher E. A.; Canary J. W. Anal. Chem. 2021, 93, 10090.
doi: 10.1021/acs.analchem.1c00911 |
[31] |
Huang J.; Wang C.; Lin M.-G.; Zeng F.; Wu S.-Z. Acta Chim. Sinica 2021, 79, 331. (in Chinese)
doi: 10.6023/A20100459 |
( 黄靖, 王超, 林敏刚, 曾钫, 吴水珠, 化学学报, 2021, 79, 331.)
doi: 10.6023/A20100459 |
|
[32] |
Chen F.; Teng L.; Lu C.; Zhang C.; Rong Q.; Zhao Y.; Yang Y.; Wang Y.; Song G.; Zhang X. Anal. Chem. 2020, 92, 13452.
doi: 10.1021/acs.analchem.0c02859 |
[33] |
Zhou D. Y.; Li Y.; Jiang W. L.; Tian Y.; Fei J.; Li C. Y. Chem. Commun. 2018, 54, 11590.
doi: 10.1039/C8CC07389A |
[34] |
Cheng D.; Peng J.; Lv Y.; Su D.; Liu D.; Chen M.; Yuan L.; Zhang X. J. Am. Chem. Soc. 2019, 141, 6352.
doi: 10.1021/jacs.9b01374 pmid: 30897899 |
[35] |
Martinez V.; Henary M. Chemistry 2016, 22, 13764.
|
[36] |
Jose J.; Burgess K. Tetrahedron 2006, 62, 11021.
doi: 10.1016/j.tet.2006.08.056 |
[37] |
Sebok-Nagy K.; Miskolczy Z.; Biczok L. Photochem. Photobiol. 2005, 81, 1212.
pmid: 15901209 |
[38] |
Wang P.; Yu L.; Gong J.; Xiong J.; Zi S.; Xie H.; Zhang F.; Mao Z.; Liu Z.; Kim J. S. Angew. Chem., Int. Ed. 2022, 61, e202206894.
doi: 10.1002/anie.v61.36 |
[39] |
Lin K. K.; Wu S. C.; Hsu K. M.; Hung C. H.; Liaw W. F.; Wang Y. M. Org. Lett. 2013, 15, 4242.
doi: 10.1021/ol401932p |
[40] |
Hooper D. C.; Scott G. S.; Zborek A.; Mikheeva T.; Kean R. B.; Koprowski H.; Spitsin S. V. FASEB J. 2000, 14, 691.
doi: 10.1096/fasebj.14.5.691 pmid: 10744626 |
[41] |
Wang Z.; Cong T. D.; Zhong W.; Lau J. W.; Kwek G.; Chan-Park M. B.; Xing B. Angew. Chem., Int. Ed. 2021, 60, 16900.
doi: 10.1002/anie.v60.31 |
[1] | 王海朋, 蔡文生, 邵学广. 抗冻剂抗冻机制的近红外光谱与分子模拟研究★[J]. 化学学报, 2023, 81(9): 1167-1174. |
[2] | 武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英. 喹啉基粘度荧光探针的合成及其检测应用[J]. 化学学报, 2023, 81(8): 905-911. |
[3] | 郑文山, 高冠斌, 邓浩, 孙涛垒. Ag2Se@Ag2S核壳量子点的室温合成及其近红外荧光性能优化[J]. 化学学报, 2023, 81(7): 763-770. |
[4] | 吕鑫, 吴仪, 张勃然, 郭炜. 过氧化氢激活型近红外氟硼二吡咯光敏剂的设计、合成及光动力治疗研究[J]. 化学学报, 2023, 81(4): 359-370. |
[5] | 孙丽, 王亚静, 李涛, 郭英姝, 张书圣. 金纳米笼探针用于线粒体成像和光热损伤细胞★[J]. 化学学报, 2023, 81(10): 1301-1310. |
[6] | 宋思睿, 唐永和, 孙良广, 郭锐, 姜冠帆, 林伟英. 基于香豆素荧光团的新型极性检测荧光探针的开发及其成像应用[J]. 化学学报, 2022, 80(9): 1217-1222. |
[7] | 刘巴蒂, 王承俊, 钱鹰. 噻吩基氟硼二吡咯近红外光敏染料的合成、双光子荧光成像及光动力治疗研究[J]. 化学学报, 2022, 80(8): 1071-1083. |
[8] | 廉纬, 方泽铠, 涂大涛, 李嘉尧, 韩思远, 李仁富, 商晓颖, 陈学元. 模板法控制合成AgInSe2:Zn2+近红外荧光量子点及其生物标记应用※[J]. 化学学报, 2022, 80(5): 625-632. |
[9] | 张景荣, 黄得财, 黄聪聪, 梁思思, 朱浩淼. In2BP3O12:Cr3+宽带近红外荧光粉的发光性能及应用研究※[J]. 化学学报, 2022, 80(4): 453-459. |
[10] | 吴志芬, 柯建熙, 刘永升, 孙蓬明, 洪茂椿. 稀土近红外二区纳米荧光影像探针及其生物医学应用※[J]. 化学学报, 2022, 80(4): 542-552. |
[11] | 刘若湄, 冯艳辉, 李卓, 卢珊, 关天用, 李幸俊, 刘䶮, 陈卓, 陈学元. 基于cypate光裂解的新型近红外光响应稀土上转换纳米载药系统※[J]. 化学学报, 2022, 80(4): 423-427. |
[12] | 王其, 夏辉, 熊炎威, 张新敏, 蔡杰, 陈冲, 高逸聪, 陆峰, 范曲立. 调控供电子策略简易制备近红外二区有机小分子光学诊疗试剂[J]. 化学学报, 2022, 80(11): 1485-1493. |
[13] | 黄菊, 李贞, 刘志洪. 近红外光激发功能化上转换纳米颗粒用于解聚Aβ聚集体[J]. 化学学报, 2021, 79(8): 1049-1057. |
[14] | 高贺麒, 焦迪, 欧翰林, 章经天, 丁丹. 高性能聚集诱导发光纳米探针用于肿瘤切除手术导航[J]. 化学学报, 2021, 79(3): 319-325. |
[15] | 黄靖, 王超, 林敏刚, 曾钫, 吴水珠. 醌氧化还原酶响应型光声探针的合成及其对乳腺癌的成像[J]. 化学学报, 2021, 79(3): 331-337. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||