化学学报 ›› 2023, Vol. 81 ›› Issue (9): 1129-1134.DOI: 10.6023/A23040157 上一篇    下一篇

所属专题: 庆祝《化学学报》创刊90周年合辑

研究论文

苯二甲酸衍生物修饰聚合物的超长有机室温磷光

田野a,b, 司端惠a,b, 高水英a,b,*(), 曹荣a,b,*()   

  1. a 中国科学院福建物质结构研究所 结构化学国家重点实验室 福建福州 350002
    b 中国科学院大学 北京 100049
  • 投稿日期:2023-04-22 发布日期:2023-08-24
  • 作者简介:
    庆祝《化学学报》创刊90周年.
  • 基金资助:
    科技部国家重点研发计划重点专项(2021YFA1501500); 国家自然科学基金(22033008); 国家自然科学基金(22220102005); 国家自然科学基金(22201286); 国家自然科学基金(22171265); 中国福建光电信息科学与技术创新实验室(2021ZZ103)

Ultra-Long Organic Room Temperature Phosphorescence of Phthalic Acid Derivative Modified Polymer

Ye Tiana,b, Duanhui Sia,b, Shuiying Gaoa,b(), Rong Caoa,b()   

  1. a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
    b University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-04-22 Published:2023-08-24
  • Contact: *E-mail: gaosy@fjirsm.ac.cn; rcao@fjirsm.ac.cn
  • About author:
    Dedicated to the 90th anniversary of Acta Chimica Sinica.
  • Supported by:
    The National Key Research and Development Program of China(2021YFA1501500); The National Natural Science Foundation of China(22033008); The National Natural Science Foundation of China(22220102005); The National Natural Science Foundation of China(22201286); The National Natural Science Foundation of China(22171265); Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ103)

超长有机室温磷光材料(UORTP)由于其独特的长寿命、丰富的激发态等优点, 在成像、防伪、信息加密等领域受到了越来越多的关注. 具有UORTP的聚合物材料则因其可加工性、透明度和柔韧性等特性渐渐走入人们的视野. 本工作利用苯二甲酸衍生物作为磷光体, 通过酰胺键将苯二甲酸分子修饰在聚乙烯亚胺分子链上, 合成了一系列具有超长有机室温磷光性能的聚合物. 密度泛函理论(DFT)计算证明苯二甲酸和聚乙烯亚胺之间存在能量转移效应, 阐释了长寿命磷光的产生途径. 同时, 通过调控磷光小分子的含量, 这些聚合物可获得达1.51 s的超长寿命和6 s可见余辉. 这是因为随着磷光分子含量的增加, 逐渐增强的分子内氢键构建的刚性环境限制了其非辐射跃迁. 基于材料磷光强度随温度变化的特性, 进一步开发了其在温度传感领域的应用. 这项工作为设计具有长寿命室温磷光和可调余辉的智能发光聚合物提供了一种新的方法.

关键词: 有机室温磷光, 聚合物, 超长寿命, 可见余辉, 温度传感

Ultra-long organic room temperature phosphorescent materials (UORTP) have attracted more and more attention in the fields of imaging, anti-counterfeiting and information encryption due to their unique long life and abundant excited state characteristics. Polymer materials with UORTP are gradually coming into people's eyes because of their machinability, transparency and flexibility. In this work, a series of polymers with UORTP phosphorescent properties were synthesized by modifying phthalic acid molecules on polyethylenimide (PEI) molecular chains through amide bonds using phthalic acid derivatives (isophthalic acid, IPA/terephthalic acid, TPA/phthalic acid, PA) as phosphorescent units. Fourier transform infrared spectrum and X-ray photoelectron spectroscopy demonstrated that the phthalic acid molecules were successfully modified on polyethylenimide. 13C Nuclear magnetic resonance illustrates the structure of the phthalic acid remained. Density functional theory (DFT) calculation proved the existence of energy transfer effect between phthalic acid and polyethylenimide, which explained the mechanism of long life phosphorescence. By changing the content of phthalic acid molecules, these polymers can achieve a long-lived lifetime of 1.51 s and an afterglow of 6 s. This is because the rigid environment constructed by the increasing intramolecular hydrogen bond limits the non-radiative transition with the increase of phosphor molecule content. The maximum lifetimes of IPA-PEI, TPA-PEI and PA-PEI were 1.51 s, 0.27 s and 0.03 s, which were 1.5 times, 13.8 times and 47.6 times longer than those of IPA (1 s), TPA (19.6 ms) and PA (0.63 ms), respectively. Thermogravimetry confirmed that the polymers have good thermal stability and the cyclic variable-temperature curves of phosphorescence intensity and cyclic variable-temperature curves of phosphorescent lifetime also illustrate the polymers’ thermal stability. In addition, we further developed application of these polymers in the field of temperature sensing based on the change of phosphorescence intensity with temperature, which the relative sensitivity is up to 1.5%•K-1. This work provides a novel way for designing smart luminescent polymers with long-lived room temperature phosphorescence and adjustable afterglow.

Key words: organic room-temperature phosphorescence, polymers, ultra-long lifetime, afterglow, temperature sensing