化学学报 ›› 2024, Vol. 82 ›› Issue (2): 190-212.DOI: 10.6023/A23110503 上一篇 下一篇
综述
投稿日期:
2023-11-17
发布日期:
2023-12-20
作者简介:
陈健强, 博士, 本科毕业于南通大学; 博士毕业于兰州大学(导师: 许鹏飞教授); 2019年11月入职台州学院高等研究院. 主要从事光化学反应研究, 自入职以来以第一作者或通讯作者在Nat. Commun.; Green Chem.; Org. Lett.; Org. Chem. Front.等国际核心期刊上发表论文14篇(其中IF>5.0论文11篇), 授权发明专利3项. |
朱钢国, 教授, 博士生导师, 2005年获得中国科学院上海有机化学研究所博士学位, 之后在普渡大学、印第安纳大学相继进行博士后研究, 2008年底回国加入浙江师范大学化学系, 2011年晋升教授, 2020年入选浙江省万人计划科技创新领军人才, 现为浙江师范大学化学与材料科学学院院长, 主要从事有机合成、自由基化学等相关研究. 独立工作以来已在Angew. Chem. Int. Ed.; Nat. Commun.; Chem. Sci.等期刊发表SCI论文80余篇, 授权中国发明专利10多件. |
吴劼, 教授、博士生导师. 于2000年6月获得中国科学院上海有机化学研究所博士学位, 之后分别先后在哈佛大学、洛克菲勒大学艾伦•戴蒙德艾滋病研究中心、VivoQuest, Inc. (纽约)从事博士后、访问学者、研究员工作, 2004年回国进入复旦大学化学系担任副教授, 2006年晋升为教授, 博士生导师. 2019年加入台州学院医药化工学院担任院长职务, 主要从事有机合成、药物化学及相关研究工作. 独立工作以来已在Nat. Commun.; J. Am. Chem. Soc.; Angew. Chem. Int. Ed.; Chem. Soc. Rev.等国际核心期刊发表SCI论文360余篇(其中IF>5.0论文220余篇), 论文被引用16500余次(H index 65), 参与编写专著四本, 独立撰写专著一本, 获得美国发明专利2项, 中国发明专利30余项. |
基金资助:
Jianqiang Chena,b, Gangguo Zhua(), Jie Wub,c()
Received:
2023-11-17
Published:
2023-12-20
Contact:
E-mail: Supported by:
文章分享
氮杂环丙烷类化合物是重要的有机合成子, 其广泛存在于各种有机合成反应当中. 因其独特的三元环结构, 致使其具有较大的环张力. 通常氮杂环丙烷类化合物可以与各种亲核试剂反应, 合成各种传统方法难以合成的β-位取代的胺类化合物, 其中包括氨基醇、氨基醚以及二胺类化合物. 通过亲核试剂开氮杂环丙烷的反应研究已经相当成熟, 此处不再赘述. 此外, 过渡金属催化的C—N活化是一类重要的合成方法. 作为C—N活化重要底物, 过渡金属催化氮杂环丙烷的开环偶联反应取得长足的发展. 尤其是近十年来, 镍催化氮杂环丙烷的开环偶联反应不断涌现. 基于此, 综述了镍催化在氮杂环丙烷开环偶联反应中的研究进展和设计原则, 重点介绍氮杂环丙烷的开环原理, 对比不同取代的氮杂环丙烷区域选择性, 总结不同催化模式下的共性. 本综述将从以下三个方面介绍氮杂环丙烷的开环偶联反应: 其一是单独的镍催化模式; 其二是光/镍协同共催化模式; 其三则是电化学促进的镍催化模式. 对于氮杂环丙烷的开环模式则可以分为: 镍催化的SN2型亲核开环模式、卤素离子亲核开环模式以及电化学还原模式.
陈健强, 朱钢国, 吴劼. 镍催化氮杂环丙烷的开环偶联反应研究[J]. 化学学报, 2024, 82(2): 190-212.
Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines[J]. Acta Chimica Sinica, 2024, 82(2): 190-212.
[1] |
Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O’Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69, 279.
doi: 10.1021/cr60259a002 |
[2] |
(a) Singh, G. S.; D’hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080.
doi: 10.1021/cr0680033 |
(b) McCoull, W.; Davis, F. A. Synthesis 2000, 1347.
|
|
[3] |
(a) Hu, X. E. Tetrahedron 2004, 60, 2701.
doi: 10.1016/j.tet.2004.01.042 |
(b) Sabir, S.; Kumar, G.; Verma, V. P.; Jat, J. L. ChemistrySelect 2018, 3, 3702.
doi: 10.1002/slct.v3.13 |
|
[4] |
(a) Takeda, Y.; Sameera, W. M. C.; Minakata, S. Acc. Chem. Res. 2020, 53, 1686.
doi: 10.1021/acs.accounts.0c00395 |
(b) Du, Q.; Zhang, L.; Gao, F.; Wang, L.; Zhang, W. Chin. J. Org. Chem. 2022, 42, 3240. (in Chinese)
doi: 10.6023/cjoc202207034 |
|
(杜青锋, 张璐, 高峰, 王乐, 张万斌, 有机化学, 2022, 42, 3240.)
doi: 10.6023/cjoc202207034 |
|
[5] |
(a) Alper, H.; Urso, F.; Smith, D. J. H. J. Am. Chem. Soc. 1983, 105, 6737.
doi: 10.1021/ja00360a045 |
(b) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 111, 931.
doi: 10.1021/ja00185a023 |
|
[6] |
(a) Piotti, M. E.; Alper, H. J. Am. Chem. Soc. 1996, 118, 111.
doi: 10.1021/ja9531586 |
(b) Davoli, P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem. 1999, 64, 518.
doi: 10.1021/jo981568h |
|
(c) Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Angew. Chem., Int. Ed. 2002, 41, 2781.
doi: 10.1002/1521-3773(20020802)41:15【-逻*辑*与-】amp;lt;2781::AID-ANIE2781【-逻*辑*与-】amp;gt;3.0.CO;2-S |
|
[7] |
Takeda, Y.; Sameera, W. M. C.; Minakata, S. Acc. Chem. Res. 2020, 53, 1686.
doi: 10.1021/acs.accounts.0c00395 |
[8] |
(a) Zhang, Z.; Gong, L.; Zhou, X.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Acta Chim. Sinica 2019, 77, 783. (in Chinese)
doi: 10.6023/A19060208 |
(张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.)
doi: 10.6023/A19060208 |
|
(b) Yang, M.; Ye, B.; Chen, J.; Wu, J. Acta Chim. Sinica 2022, 80, 11. (in Chinese)
doi: 10.6023/A21100457 |
|
(杨民, 叶柏柏, 陈健强, 吴劼, 化学学报, 2022, 80, 11.)
doi: 10.6023/A21100457 |
|
(c) Hou, H.; Cheng, Y.; Chen, B.; Tung, C.; Wu, L. Chin. J. Org. Chem. 2023, 43, 1012. (in Chinese)
doi: 10.6023/cjoc202211048 |
|
(侯虹宇, 程元元, 陈彬, 佟振合, 吴骊珠, 有机化学, 2023, 43, 1012.)
|
|
(d) Chen, J.; Zhu, G.; Wu, J. Acta Chim. Sinica 2023, 81, 1609. (in Chinese)
doi: 10.6023/A23070339 |
|
(陈健强, 朱钢国, 吴劼, 化学学报, 2023, 81, 1609.)
doi: 10.6023/A23070339 |
|
(e) Chen, J.-Q.; Tu, X.; Tang, Q.; Li, K.; Xu, L.; Wang, S.; Ji, M.; Li, Z.; Wu, J. Nat. Commun. 2021, 12, 5328.
doi: 10.1038/s41467-021-25628-x |
|
(f) Ji, M.; Xu, L.; Luo, X.; Jiang, M.; Wang, S.; Chen, J.; Wu, J. Org. Chem. Front. 2021, 8, 6704.
doi: 10.1039/D1QO01368H |
|
(g) Chen, J.-Q.; Luo, X.; Chen, M.; Chen, Y.; Wu, J. Org. Lett. 2023, 25, 1978.
doi: 10.1021/acs.orglett.3c00544 |
|
[9] |
(a) Yoshida, J.-I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
doi: 10.1021/acs.chemrev.7b00475 |
(b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 |
|
(c) Wang, Z.; Ma, C.; Fang, P.; Xu, H.; Mei, T. Acta Chim. Sinica 2022, 80, 1115 (in Chinese)
doi: 10.6023/A22060260 |
|
(王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115)
doi: 10.6023/A22060260 |
|
[10] |
(a) Chen, J.-Q.; Liu, N.; Hu, Q.; Liu, J.; Wu, J.; Cai, Q.; Wu, J. Org. Chem. Front. 2021, 8, 5316.
doi: 10.1039/D1QO00957E |
(b) Chen, J.-Q.; Tu, X.; Qin, B.; Huang, S.; Zhang, J.; Wu, J. Org. Lett. 2022, 24, 642.
doi: 10.1021/acs.orglett.1c04082 |
|
(c) Qin, B.; Huang, S.; Chen, J.-Q.; Xiao, W.; Wu, J. Org. Chem. Front. 2022, 9, 3521.
doi: 10.1039/D2QO00487A |
|
(d) Wang, X.; Chen, Y.; Liang, P.; Chen, J.-Q.; Wu, J. Green Chem. 2022, 24, 5077.
doi: 10.1039/D2GC01609E |
|
(e) Wang, X.; Chen, Y.; Liang, P.; Chen, J.-Q.; Wu, J. Org. Chem. Front. 2022, 9, 4328.
doi: 10.1039/D2QO00741J |
|
(f) Chen, J.-Q.; Chen, Q.; Chen, B.; Wu, J. Org. Chem. Front. 2023, 10, 2018.
doi: 10.1039/D3QO00213F |
|
(g) Chen, M.; Sun, W.; Yang, J.; Yuan, L.; Chen, J.-Q.; Wu, J. Green Chem. 2023, 25, 3857.
doi: 10.1039/D3GC01059G |
|
[11] |
(a) Ananikov, V. P. ACS Catal. 2015, 5, 1964.
doi: 10.1021/acscatal.5b00072 |
(b) Chen, J.; Wu, J. Chin. J. Org. Chem. 2022, 42, 921. (in Chinese)
doi: 10.6023/cjoc202200017 |
|
(陈健强, 吴劼, 有机化学, 2022, 42, 921.)
doi: 10.6023/cjoc202200017 |
|
(c) Ruan, L.; Dong, Z.; Chen, C.; Wu, S.; Sun, J. Chin. J. Org. Chem. 2017, 37, 2544. (in Chinese)
|
|
(阮利衡, 董振诚, 陈春欣, 吴爽, 孙京, 有机化学, 2017, 37, 2544.)
doi: 10.6023/cjoc201704051 |
|
[12] |
Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 2890.
doi: 10.1021/ja017652n |
[13] |
Ravn, A. K.; Vilstrup, M. B. T.; Noerby, P.; Nielsen, D. U; Daasbjerg, K.; Skrydstrup, T. J. Am. Chem. Soc. 2019, 141, 11821.
doi: 10.1021/jacs.9b05934 |
[14] |
Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 9541.
doi: 10.1021/ja3013825 |
[15] |
Nielsen, D. K.; Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 13605.
doi: 10.1021/ja4076716 pmid: 23961769 |
[16] |
Jensen, K. L.; Standley, E. A.; Jamison, T. F. J. Am. Chem. Soc. 2014, 136, 11145.
doi: 10.1021/ja505823s pmid: 25055180 |
[17] |
Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2015, 137, 5638.
doi: 10.1021/jacs.5b02503 |
[18] |
Jensen, K. L.; Nielsen, D. U.; Jamison, T. F. Chem. Eur. J. 2015, 21, 7379.
doi: 10.1002/chem.v21.20 |
[19] |
(a) Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M. S.; Doyle, A. G. J. Am. Chem. Soc. 2017, 139, 5688.
doi: 10.1021/jacs.7b03448 |
(b) Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M. S.; Doyle, A. G. J. Am. Chem. Soc. 2018, 140, 774.
|
|
[20] |
Liu, S.; Wang, S.-L.; Wan, J.; Peng, S.; Zhang, J.-R.; Ding, H.-J.; Zhang, B.; Ni, H.-L.; Cao, P.; Hu, P.; Wang, B.-Q.; Chen, B. Org. Lett. 2023, 25, 6582.
doi: 10.1021/acs.orglett.3c02399 |
[21] |
Davies, J.; Janssen-Müller, D.; Zimin, D. P.; Day, C. S.; Yanagi, T.; Elfert, J.; Martin, R. J. Am. Chem. Soc. 2021, 143, 4949.
doi: 10.1021/jacs.1c01916 pmid: 33724815 |
[22] |
Tang, W.; Fan, P. Org. Lett. 2023, 25, 5756.
doi: 10.1021/acs.orglett.3c01973 |
[23] |
Xu, S.; Hirano, K.; Miura, M. Org. Lett. 2021, 23, 5471.
doi: 10.1021/acs.orglett.1c01821 |
[24] |
Yu, X.-Y.; Zhou, Q.-Q.; Wang, P.-Z.; Liao, C.-M.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 421.
doi: 10.1021/acs.orglett.7b03747 pmid: 29314848 |
[25] |
Steiman, T. J.; Liu, J.; Mengiste, A.; Doyle, A. G. J. Am. Chem. Soc. 2020, 142, 7598.
doi: 10.1021/jacs.0c01724 pmid: 32250602 |
[26] |
Xu, C.-H.; Li, J.-H.; Xiang, J.-N.; Deng, W. Org. Lett. 2021, 23, 3696.
doi: 10.1021/acs.orglett.1c01077 |
[27] |
Fan, P.; Jin, Y.; Liu, J.; Wang, R.; Wang, C. Org. Lett. 2021, 23, 7364.
doi: 10.1021/acs.orglett.1c02514 |
[28] |
Dongbang, S.; Doyle, A. G. J. Am. Chem. Soc. 2022, 144, 20067.
doi: 10.1021/jacs.2c09294 pmid: 36256882 |
[29] |
Mori, Y.; Hayashi, M.; Sato, R.; Tai, K.; Nagase, T. Org. Lett. 2023, 25, 5569.
doi: 10.1021/acs.orglett.3c01821 |
[30] |
Wang, Y.-Z.; Wang, Z.-H.; Eshel, I. L.; Sun, B.; Liu, D.; Gu, Y.-C.; Milo, A.; Mei, T.-S. Nat. Commun. 2023, 14, 2322.
doi: 10.1038/s41467-023-37965-0 |
[31] |
Yang, G.; Wang, Y.; Qiu, Y. Chem. Eur. J. 2023, 29, e202300959.
doi: 10.1002/chem.v29.36 |
[32] |
Kumar, G. S.; Zhu, C.; Kancherla, R.; Shinde, P. S.; Rueping, M. ACS Catal. 2023, 13, 8813.
doi: 10.1021/acscatal.3c01503 |
[33] |
Hu, X.; Cheng-Sánchez, I.; Cuesta-Galisteo, S.; Nevado, C. J. Am. Chem. Soc. 2023, 145, 6270.
doi: 10.1021/jacs.2c12869 |
[1] | 易敬霖, 陈茂. 三氟氯乙烯与甲基异丙烯基醚的光诱导共聚反应★[J]. 化学学报, 2024, 82(2): 126-131. |
[2] | 邓沈娜, 彭常春, 牛云宏, 许云, 张云霄, 陈祥, 王红敏, 刘珊珊, 沈晓. 自由基Brook重排调控的α-氟烷基-α-硅基甲醇参与的烯烃双官能团化反应[J]. 化学学报, 2024, 82(2): 119-125. |
[3] | 李雅宁, 王晓艳, 唐勇. 自由基聚合的立体选择性调控★[J]. 化学学报, 2024, 82(2): 213-225. |
[4] | 李珊, 路俊欣, 刘杰, 蒋绿齐, 易文斌. 氟烷基亚磺酸钠盐电化学合成α-氟烷基酮[J]. 化学学报, 2024, 82(2): 110-114. |
[5] | 吴宇晗, 张栋栋, 尹宏宇, 陈正男, 赵文, 匙玉华. “双碳”目标下Janus In2S2X光催化还原CO2的密度泛函理论研究[J]. 化学学报, 2023, 81(9): 1148-1156. |
[6] | 刘嘉文, 林玮璜, 王惟嘉, 郭学益, 杨英. Cu1.94S-SnS纳米异质结的合成及其光催化降解研究[J]. 化学学报, 2023, 81(7): 725-734. |
[7] | 任妍妍, 李欣, 韩英锋. 基于氮杂环卡宾蓝光有机自由基的合成及其光学性质研究★[J]. 化学学报, 2023, 81(7): 735-740. |
[8] | 何明慧, 叶子秋, 林桂庆, 尹晟, 黄心翊, 周旭, 尹颖, 桂波, 汪成. 卟啉基共价有机框架的光催化研究进展★[J]. 化学学报, 2023, 81(7): 784-792. |
[9] | 刘坜, 郑刚, 范国强, 杜洪光, 谭嘉靖. 4-酰基/氨基羰基/烷氧羰基取代汉斯酯参与的有机反应研究进展[J]. 化学学报, 2023, 81(6): 657-668. |
[10] | 蔡新红, 陈建中, 张万斌. 镍催化不对称氢化构建手性C—X键的研究进展★[J]. 化学学报, 2023, 81(6): 646-656. |
[11] | 李飞, 丁汇丽, 李超忠. 基于氟仿衍生的三氟甲基硼络合物参与的烯烃氢三氟甲基化反应[J]. 化学学报, 2023, 81(6): 577-581. |
[12] | 徐袁利, 潘辉, 杨义, 左智伟. 连续流条件下蒽-铈协同催化的苄位碳氢键选择性氧化反应★[J]. 化学学报, 2023, 81(5): 435-440. |
[13] | 齐学平, 王飞, 张健. 后合成法构筑钛基金属有机框架及其应用[J]. 化学学报, 2023, 81(5): 548-558. |
[14] | 杨洁, 凌琳, 李玉学, 吕龙. 高氯酸铵热分解机理的密度泛函理论研究[J]. 化学学报, 2023, 81(4): 328-337. |
[15] | 赵亚婷, 刘帆, 汪秋安, 夏吾炯. 可见光促进(氮杂)芳香胺与重氮乙酸乙酯的N-烷基化反应[J]. 化学学报, 2023, 81(2): 111-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||