研究评论
甘定伟a, 周儒森a, 应见喜*,b, 周仁武*,a
投稿日期:2025-09-12
通讯作者:
*E-mail: yingjianxi@nbu.edu.cn; renwu.zhou@xjtu.edu.cn
基金资助:Dingwei Gana, Rusen Zhoua, Jianxi Ying*,b, Renwu Zhou*,a
Received:2025-09-12
Supported by:文章分享
生命的起源和演化是人类面临的终极谜题之一。传统化学起源学说涉及惰性气体分子活化、简单分子向复杂功能分子演化、生物分子同手性以及遗传密码起源等关键问题。“米勒-尤里” 放电实验以来,“等离子体放电” 被认为是生命分子起源的可能场景之一。等离子体作为一种非平衡态的高能环境,可通过高能电子、离子和自由基等活性物种驱动分子裂解与重组,为复杂有机分子的形成、分子复杂化等过程提供重要的物理化学基础。此外,特定的物理化学界面(如气液界面)可为等离子体场景下分子的富集、组装等提供关键微环境。本文综述了等离子体放电在生命化学起源中的研究进展,旨在为探索生命起源的复杂化学过程提供新的研究视角。
甘定伟, 周儒森, 应见喜, 周仁武. 等离子体放电在生命化学起源中的研究进展[J]. 化学学报, doi: 10.6023/A25090309.
Dingwei Gan, Rusen Zhou, Jianxi Ying, Renwu Zhou. Research Progress of Plasma Discharge in the Chemical Evolution of Life[J]. Acta Chimica Sinica, doi: 10.6023/A25090309.
| [1] So Much More to Know.Science, 2005, 309: 78-102 [2] Darwin C. Letter to Joseph Dalton Hooker (1 February1871). The Life and Letters of Charles Darwin, 1871, 2: 119-120 [3] Oparin A I.The Origin of Life.Moscow: Moskovskoe Obshchestvo Ispytatelei Prirody, 1924 [4] Haldane J B S. The Origin of Life. The Rationalist Annual, 1929, 148-153: [5] Bernal J D.The Physical Basis of Life.Proc. Phys. Soc. 1947, 62(4): [6] Calvin M.Chemical Evolution: Life is a logical consequence of known chemical principles operating on the atomic composition of the universe.Am. Sci., 1975, 63: 169-177 [7] Peretó Juli, Bada Jeffrey L., Antonio. L.Charles Darwin and the Origin of Life.Origins Life Evol. Biospheres, 2009, 39: 395-406 [8] Li Y L, Sun S.The origin of life on Earth (in Chinese). Chin Sci Bull, 2016, 61: 3065-3078 (李一良, 孙思. 地球生命的起源. 科学通报, 2016, 61: 3065-3078) [9] Jiang H J, Underwood T C, Bell J G, Lei J, Gonzales J C, Emge L, Tadese L G, Abd El-Rahman M K, Wilmouth D M, Brazaca L C, Ni G, Belding L, Dey S, Ashkarran A A, Nagarkar A, Nemitz M P, Cafferty B J, Sayres D S, Ranjan S, Crocker D R, Anderson J G, Sasselov D D, Whitesides G M. Mimicking lightning-induced electrochemistry on the early Earth.Proc. Natl. Acad. Sci. U. S. A., 2024, 121: e2400819121 [10] Martin W, Baross J, Kelley D, Russell M J.Hydrothermal vents and the origin of life.Nat. Rev. Microbiol., 2008, 6: 805-814 [11] Zhao Y F, Hua Y J, Li Y L, Sun Y Q, Yao W, Zheng H Q, Hao J H, Ying J X, Chen Y Z, Tian B.Strategic Study for the Development of Space Life (in Chinese). Chin. J. Space Sci., 2024, 44(3): 387-399(赵玉芬, 华跃进, 李一良, 孙野青, 姚伟, 郑慧琼, 郝记华, 应见喜, 陈宇综, 田兵. 空间生命学科发展战略研究. 空间科学学报, 2024, 44(3): 387-399) [12] Wu W R, Wang C, Liu Y, Qin L P, Lin W, Ye S Y, Li H, Shen F, Zhang Z.Frontier scientific questions in deep space exploration (in Chinese). Chin Sci Bull, 2023, 68: 606-627 (吴伟仁, 王赤, 刘洋, 秦礼萍, 林巍, 叶生毅, 李晖, 沈芳, 张哲. 深空探测之前沿科学问题探析. 科学通报, 2023, 68:606-627) [13] He Y J.The problem on the origin of homochirality in nature (in Chinese). Chin Sci Bull, 2017, 62: 2465-2472 (何裕建. 自然界中同型手性起源的难题. 科学通报, 2017, 62: 2465-2472) [14] Vladimir P.Chirality in chemistry.Science, 1976, 193: 17-24 [15] Zhao Z, Cheng S W, Mao Y Z, Ying J X, Tian S Y, Zhao Y F.Primary Research of the Relationship between Genetic Codons and Amino Acids Based on the Technology of Electronic Tongue.Acta Chimica Sinica, 2021, 79(11): 1372-1375. (赵钊, 程时文, 毛岳忠, 应见喜, 田师一, 赵玉芬. 基于电子舌技术的氨基酸与密码子关系的初步研究. 化学学报, 2021, 79: 1372-1375) [16] Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life.Chem. Rev., 2014, 114: 285-366 [17] Ying J, Fu S, Li X, Feng L, Xu P, Liu Y, Gao X, Zhao Y.A plausible model correlates prebiotic peptide synthesis with the primordial genetic code.Chem. Commun., 2018, 54: 8598-8601 [18] Gan D W, Lei X M, Zhou R W, Fu S S, Sun J, Zhou R S, Ostrikov K, Zhao Y F, Ying J X.A plausible pathway to prebiotic peptides via amino acid amides on the primordial Earth.Earth Planet. Phys., 2024, 8: 868-877 [19] Stolar T, Grubešić S, Cindro N, Meštrović E, Užarević K, Hernández J G.Mechanochemical Prebiotic Peptide Bond Formation.Angew. Chem., Int. Ed., 2021, 60: 12727-12731 [20] Gan D W, Ying J X, Zhao Y F. Prebiotic Chemistry: The Role of Trimetaphosphate in Prebiotic Chemical Evolution. Front. Chem., 2022, 10: [21] Maruyama S, Kurokawa K, Ebisuzaki T, Sawaki Y, Suda K, Santosh M.Nine requirements for the origin of Earth's life: Not at the hydrothermal vent, but in a nuclear geyser system.Geosci. Front., 2019, 10: 1337-1357 [22] Ferus M, Nesvorný D, Šponer J, Kubelík P, Michalčíková R, Shestivská V, Šponer J E, Civiš S.High-energy chemistry of formamide: a unified mechanism of nucleobase formation.Proc. Natl. Acad. Sci. U. S. A., 2015, 112: 657-662 [23] Hess B L, Piazolo S, Harvey J.Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth.Nat. Commun., 2021, 12: 1535 [24] Miller S L.A production of amino acids under possible primitive earth conditions.Science, 1953, 117: 528-529 [25] Velikhov E P, Kovalev A S, Rakhimov A T.Physical phenomena in a gas-discharge plasma.Moscow Izdatel Nauka, 1987 [26] Lukes P, Locke B R, Brisset J-L.Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments.Plasma Chem. Catal. Gases Liq., 2012, 1: 243-308 [27] Eliasson B, Kogelschatz U.Nonequilibrium volume plasma chemical processing.IEEE Trans. Plasma Sci., 2002, 19: 1063-1077 [28] Gan D W, Hong L F, Li T Y, Zhang T Q, Wang X Y, Fan J P, Zhou R S, Liu D X, Ying J X, Cullen P J, Zhao Y F, Zhou R W.Discharge plasma for prebiotic chemistry: Pathways to life’s building blocks.Earth Planet. Phys., 2024, 8: 823-835 [29] Ring D, Wolman Y, Friedmann N, Miller S L.Prebiotic Synthesis of Hydrophobic and Protein Amino Acids.Proc. Natl. Acad. Sci. U. S. A., 1972, 69: 765-768 [30] Plankensteiner K, Reiner H, Schranz B, Rode B M.Prebiotic Formation of Amino Acids in a Neutral Atmosphere by Electric Discharge.Angew. Chem., Int. Ed., 2004, 43: 1886-1888 [31] Janda M, Morvova M, Machala Z, Morva I.Study of Plasma Induced Chemistry by DC Discharges in CO2/N2/H2O Mixtures Above a Water Surface.Origins Life Evol. Biospheres, 2008, 38: 23-35 [32] Ferus M, Nesvorný D, Šponer J, Kubelík P, Michalčíková R, Shestivská V, Šponer J E, Civiš S.High-energy chemistry of formamide: A unified mechanism of nucleobase formation.Proc. Natl. Acad. Sci. U. S. A., 2015, 112: 657-662 [33] Ferus M, Pietrucci F, Saitta A M, Knížek A, Kubelík P, Ivanek O, Shestivska V, Civiš S.Formation of nucleobases in a Miller-Urey reducing atmosphere.Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 4306-4311 [34] Managadze G.Plasma and collision processes of hypervelocity meteorite impact in the prehistory of life.Int. J. Astrobiol., 2010, 9: 157-174 [35] Hörst S M, Yelle R V, Buch A, Carrasco N, Cernogora G, Dutuit O, Quirico E, Sciamma-O'Brien E, Smith M A, Somogyi A, Szopa C, Thissen R, Vuitton V. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment.Astrobiology, 2012, 12: 809-817 [36] Miyakawa S, Murasawa K-I, Kobayashi K, Sawaoka A B.Abiotic Synthesis of Guanine with High-Temperature Plasma.Origins Life Evol. Biospheres, 2000, 30: 557-566 [37] Svatopluk C, Rafał S, Bartłomiej M S, Daniel S, Ondřej I, Antonín K, Petr K, Jiří Š, Martin F, Judit E Š.TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth.Sci. Rep., 2016, 6: 23199 [38] Cleaves H J, Chalmers J H, Lazcano A, Miller S L, Bada J L.A reassessment of prebiotic organic synthesis in neutral planetary atmospheres.Orig Life Evol. Biospheres, 2008, 38: 105-115 [39] Gan D W, Guo Y T, Lei X M, Zhang M, Fu S S, Ying J X, Zhao Y F.Urea-mediated warm ponds: Prebiotic formation of carbamoyl amino acids on the primordial Earth.Earth Planet. Sci. Lett., 2023, 607: 118072 [40] Ehrenfreund P, Rasmussen S, Cleaves J, Chen L.Experimentally tracing the key steps in the origin of life: The aromatic world.Astrobiology, 2006, 6: 490-520 [41] Fried S D, Fujishima K, Makarov M, Cherepashuk I, Hlouchova K.Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids.J. R. Soc. Interface, 2022, 19: 20210641 [42] Hayashi Y, Diono W, Takada N K, Hideki, Goto M.Glycine Oligomerization by Pulsed Discharge Plasma over Aqueous Solution under Atmospheric Pressure.ChemEngineering, 2018, 2: 17 [43] Joaquín Criado-Reyes, Bruno M Bizzarri, Juan Manuel García-Ruiz, Raffaele Saladino, Mauro. E D. The role of borosilicate glass in Miller-Urey experiment.Sci. Rep., 2021, 11: 21009 [44] Jenewein C, Maíz-Sicilia A, Rull F, González-Souto L, García-Ruiz J M. Concomitant formation of protocells and prebiotic compounds under a plausible early Earth atmosphere.Proc. Natl. Acad. Sci. U. S. A., 2025, 122: e2413816122 [45] Laurent G, Lacoste D, Gaspard P.Emergence of homochirality in large molecular systems.Proc. Natl. Acad. Sci. U. S. A., 2021, 118: e2012741118 [46] Lee T D, Yang C N.Question of Parity Conservation in Weak Interactions.Phys. Rev., 1956, 104: 254-258 [47] Bonner W A.Parity violation and the evolution of biomolecular homochirality.Chirality, 2000, 12: 114-126 [48] Keszthelyi L.Origin of the homochirality of biomolecules. Q. Rev. Biophys., 1995, 28: 473-507 [49] Meierhenrich U J, Nahon L, Alcaraz C, Bredehöft J H, Hoffmann S V, Barbier B, Brack A.Asymmetric Vacuum UV photolysis of the Amino Acid Leucine in the Solid State.Angew. Chem., Int. Ed., 2005, 44: 5630-5634 [50] Pavlov V A, Klabunovskii E I.The origin of homochirality in nature: a possible version.Russ. Chem. Rev., 2015, 84: 121 [51] Gan D, Huang J, Hong L, Jiang H, Wang X, Zhou R, Sun J, Zhou R.Catalyst-free urea synthesis via plasma-driven direct coupling of CO2 and N2 under ambient conditions.Green Chem., 2025, 27: 8811-8817 [52] Gan D W, Hong L F, Yuan S, Zhu M Y, Gao Y T, Zhang T Q, Li T Y, Chen B H, Dzimitrowicz A, Jamroz P, Cullen P J, Zhou R.Energy-efficient production of plasma-activated water: insights into controllable peroxynitrite chemistry.Green Chem., 2025, 27: 3715-3726 [53] Hong L, Gan D, Wang X, Gao Y, Jiang H, Yuan S, Huang J, Sun J, Zhou R, Zhou R.Solvated Electrons-Induced CO2 Valorization via Plasma-Liquid Interface for Sustainable Organic Acid Production.ACS Sustainable Chem. Eng., 2025, 13,16058-16070 [54] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q, Yang F J.Nanobubbles on solid surface imaged by atomic force microscopy. J.Vac. Sci. Technol., B:Nanotechnol. Microelectron.:Mater., Process., Meas., Phenom.2000, 18: 2573-2575 [55] Zhou R W, Zhang T Q, Zhou R S, Wang S, Mei D H, Mai-Prochnow A, Weerasinghe J, Fang Z, Ostrikov K, Cullen P J.Sustainable plasma-catalytic bubbles for hydrogen peroxide synthesis.Green Chem., 2021, 23: 2977-2985 [56] Zhang T Q, Knezevic J, Zhu M Y, Hong J M, Zhou R S, Song Q, Ding L Y, Sun J, Liu D X, Ostrikov K K, Zhou R W, Cullen P J.Catalyst-Free Carbon Dioxide Conversion in Water Facilitated by Pulse Discharges.J. Am. Chem. Soc., 2023, 145: 28233-28239 [57] Knezevic J, Zhang T Q, Zhou R W, Hong J, Zhou R S, Barnett C, Song Q, Gao Y T, Xu W P, Liu D X, Proschogo N, Mohanty B, Strachan J, Soltani B, Li F, Maschmeyer T, Lovell E C, Cullen P J.Long-Chain Hydrocarbons from Nonthermal Plasma-Driven Biogas Upcycling.J. Am. Chem. Soc., 2024, 146: 12601-12608 [58] Gan D W, Huang J W, Hong L F, Jiang H X, Wang X R, Zhou R S, Sun J, Zhou R W.Catalyst-Free Urea Synthesis via Plasma-Driven Direct Coupling of CO? and N? under Ambient Conditions.Green Chem., 2025 [59] Wei W, Chu F J, Chen G R, Zhou S W, Sun C R, Feng H R, Pan Y J.Prebiotic Formation of Peptides Through Bubbling and Arc Plasma.Chem-Eur J, 2024, 30: e202401809 [60] Wang J S, Tang X, Li Y, Qiu X Q.Observation and micro-electrochemical characterisation for micro-droplets in initial marine atmospheric corrosion.Corros. Eng., Sci. Technol., 2016, 51: 308-312 [61] Banerjee S, Gnanamani E, Yan X, Zare R N.Can all bulk-phase reactions be accelerated in microdroplets?Analyst, 2017, 142: 1399-1402 [62] Yan X, Bain R M, Cooks R G.Organic Reactions in Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry.Angew. Chem., Int. Ed., 2016, 55: 12960-12972 [63] Wei Z, Li Y, Cooks R G, Yan X.Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments.Annu. Rev. Phys. Chem., 2020, 71: 31-51 [64] Lee J K, Samanta D, Nam H G, Zare R N.Micrometer-Sized Water Droplets Induce Spontaneous Reduction.J. Am. Chem. Soc., 2019, 141: 10585-10589 [65] Jin S H, Chen H, Yuan X, Xing D, Wang R j, Zhao L l, Zhang D m, Gong C, Zhu C h, Gao X f, Chen Y y, Zhang X x. The Spontaneous Electron-Mediated Redox Processes on Sprayed Water Microdroplets.JACS Au, 2023, 3: 1563-1571 [66] Zhong X, Chen H, Zare R N.Ultrafast enzymatic digestion of proteins by microdroplet mass spectrometry.Nat. Commun., 2020, 11: 1049 [67] Huang K H, Chen K, Morato N M, Sams T C, Dziekonski E T, Cooks R G.High-throughput microdroplet-based synthesis using automated array-to-array transfer.Chem. Sci., 2025, 16: 7544-7550 [68] Meng Y F, Xia Y, Xu J H, Zare R N. Spraying of water microdroplets forms luminescence and causes chemical reactions in surrounding gas. Sci. Adv., 2025, 11: eadt8979 [69] Xing D, Meng Y, Yuan X, Jin S, Song X, Zare R N, Zhang X.Capture of Hydroxyl Radicals by Hydronium Cations in Water Microdroplets.Angew. Chem., Int. Ed., 2022, 61: e202207587 [70] Mohajer M A, Basuri P, Evdokimov A, David G, Zindel D, Miliordos E, Signorell R.Spontaneous formation of urea from carbon dioxide and ammonia in aqueous droplets.Science, 2025, 388: 1426-1430 [71] Nam I, Lee J K, Nam H G, Zare R N.Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets.Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 12396-12400 [72] Holden D T, Morato N M, Cooks R G.Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids.Proc. Natl. Acad. Sci. U. S. A., 2022, 119: e2212642119 [73] Wang W, Qiao L, He J, Ju Y, Yu K, Kan G, Guo C, Zhang H, Jiang J.Water Microdroplets Allow Spontaneously Abiotic Production of Peptides.J. Phys. Chem. Lett., 2021, 12: 5774-5780 [74] Ju Y, Zhang H, Jiang Y X, Wang W X, Kan G F, Yu K, Wang X, Liu J, Jiang J.Aqueous microdroplets promote C-C bond formation and sequences in the reverse tricarboxylic acid cycle.Nat. Ecol. Evol., 2023, 7: 1892-1902 |
| [1] | 陆宇韬, 郑园园, 张一弛, 周子豪, 吴景霞, 彭慧胜, 陈培宁. 用于织物显示器件的高性能银纳米线/热塑性聚氨酯透明导电纤维★[J]. 化学学报, 2025, 83(10): 1142-1149. |
| [2] | 彭红超, 陈胜, 阎斌. 基于聚苯胺和银纳米线基局部表面等离子体共振的电致变色电极[J]. 化学学报, 2024, 82(7): 797-804. |
| [3] | 毕文超, 张琳锋, 陈健, 田瑞雪, 黄昊, 姚曼. 单斜ZnP2负极材料的锂化机理及性能[J]. 化学学报, 2022, 80(6): 756-764. |
| [4] | 马进越, 黄露霏, 周宝文, 姚琳. 无机手性纳米结构的可控构筑及其催化研究进展[J]. 化学学报, 2022, 80(11): 1507-1523. |
| [5] | 赵钊, 程时文, 毛岳忠, 应见喜, 田师一, 赵玉芬. 基于电子舌技术的氨基酸与密码子关系的初步研究[J]. 化学学报, 2021, 79(11): 1372-1375. |
| [6] | 徐姝雅, 刘治宏, 张淮, 于金冉. 压电增强的等离激元光催化材料Ag/BaTiO3的制备及性能研究[J]. 化学学报, 2019, 77(5): 427-433. |
| [7] | 王猛, 闫昕, 韦德泉, 梁兰菊, 王岳平. Au/Ag复合纳米笼在表面增强拉曼光谱中的应用[J]. 化学学报, 2019, 77(2): 184-188. |
| [8] | 苏莹莹, 彭天欢, 邢菲菲, 李迪, 樊春海. 纳米等离子体生物传感及成像[J]. 化学学报, 2017, 75(11): 1036-1046. |
| [9] | 苑琪, 陈雪景, 王京涛, 翟锦. 不同结构的氧化钛纳米金复合薄膜的光伏特性[J]. 化学学报, 2014, 72(5): 624-629. |
| [10] | 严春芳, 余思扬, 蒋艳, 何巧红, 陈恒武. 基于等离子体技术制作微流控纸芯片及其在血糖检测中的应用研究[J]. 化学学报, 2014, 72(10): 1099-1104. |
| [11] | 吕江涛, 杨琳娟, 李志刚, 魏永涛, 张宝健, 梁丽勤, 王凤文, 司光远. 纳米柱表面等离子体共振的调制及其红外光谱增强特性研究[J]. 化学学报, 2013, 71(9): 1275-1280. |
| [12] | 吴星怡, 张磊, 吕丹, 刘艳华, 陈亚南, 苏位君, 罗娜, 向荣. 表面等离子体共振传感器在癌症早期诊断中的应用[J]. 化学学报, 2013, 71(03): 299-301. |
| [13] | 刘晓庆, 刘倩, 谢凯信, 曹烁晖, 蔡伟鹏, 李耀群. 多色量子点表面等离子体耦合荧光发射性质[J]. 化学学报, 2012, 70(21): 2220-2225. |
| [14] | 王青, 朱红志, 羊小海, 王柯敏, 杨丽娟, 丁静. 纳米金颗粒增强信号的表面等离子体共振生物传感器用于甲氧檗因高灵敏检测的研究[J]. 化学学报, 2012, 70(13): 1483-1487. |
| [15] | 李迎, 林钊, 李蓉卓, 刘霞. 纳米金增强SPR 检测产毒赭曲霉中PKS 基因的特异性碱基[J]. 化学学报, 2012, 70(11): 1304-1308. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||